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Main memories have become performance
bottlenecks, which means that processors
are spending their time waiting for memory
operations. For this reason, we are
presenting an analysis of the memory
scheduler called BLISS in this article.

The ACME accelerator architecture.

The memory bandwidth is the
maximum amount of data that
can be received and written to
the memory or read from the

memory and returned to the processor
per unit of time.3 The memory through-
put, the actual transfer rate, which is
limited by the memory bandwidth, has
made main memory a performance bot-
tleneck. Although maximizing memory
throughput is beneficial in some cases,
in other cases it might degrade overall
system performance. In a system where
multiple cores share a common mem-
ory interface, concurrent memory re-
quests from different threads execut-
ing on different cores can interfere with
each other while accessing the shared
DRAM main memory system. This is
also called inter-thread interference and
it degrades system performance and
slows down applications. To mitigate
inter-thread interference we decided
to study four state-of-the-art memory
schedulers, then we picked one of them,
thoroughly analyzed it, implemented it
in an open source RISC-V ISA based sim-
ulator named Coyote, then tests began,
and after that evaluation was expected
to start. Our choice for the memory

scheduler was the Blacklisting Memory
Scheduler called BLISS. Among the rea-
sons were that BLISS helps to achieve
higher system performance and fairness,
while incurring low hardware cost and
scheduling latency. Also, BLISS does not
implement total order-based ranking of
memory requests, which leads to lower
complexity, so that strict double data
rate memory timing protocols can be
met.

MEEP, ACME and Coyote

The project revolves around MEEP
(MareNostrum Experimental Exascale
Platform) which is a flexible FPGA-
based emulation platform that serves
as a basis for creating European-based
chips and an infrastructure to enable
rapid prototyping. The MEEP project is
currently emulating a self-hosted accel-
erator called ACME (Accelerated Com-
pute Memory Engine), which has two
main components: the VAS tiles and the
memory tiles. The VAS tile is a clus-
ter of 8 scalar cores, each core sup-
ports a Vector Processor Unit (VPU) and
two Systolic Array units. A scalar core
has its own L1 instruction and data

caches, and a L2 data cache slice which
also can act as a scratchpad. A mem-
ory tile consists of a memory controller,
a slice of high bandwidth memory, a
JTLB (address-translation cache) and
the MCPU which is designed to man-
age memory requests and related op-
erations. ACME aims to improve the
performance of dense (compute-bound)
and sparse (memory-bandwidth-bound)
workloads, and to find the balance be-
tween the memory hierarchy design
and the number of fused multiply-add
(FMA) units available in the system that
the performance depends on. MEEP pro-
poses Coyote which is a performance
modeling tool based on two open source
simulators called Sparta and Spike. Coy-
ote provides detailed insights at various
levels and granularity, while focusing
on data movement and the modeling of
the memory hierarchy of the system.5

The main memory

In case of ACME, the main memory is a
high bandwidth memory (HBM), which
is a stacked double data rate (DDR)
memory that is connected via an inter-
poser to an FPGA. At the bottom of the



HBM is a base logic die. On the top of
the logic die are stacked DRAM dies,
which are connected through-silicon
vias (TSVs), as shown in Figure 1. Each
slice of core DRAM die has two channels
with eight independent bank groups.
The utilization of memory banks en-
ables concurrent DRAM main memory
accesses and increases memory band-
width. All banks within a channel share
the command, address and data buses
of the channel. Each bank has a struc-
ture of a two-dimensional array of rows
and columns.

Figure 1: The high bandwidth memory ar-
chitecture.4

Memory access terminologies

Before moving on to the memory sched-
uler we need to explain a term called
a row-buffer hit. So, when a processor
generates a memory request, the data
is searched after in all levels of cache
memory and if the data is not found
in the last level cache (LLC), then the
memory controller looks for the data in
the main memory by sending the physi-
cal address of the data via the memory
address bus. On a data access, the en-
tire row containing the data is copied
into a structure called the row buffer.
A subsequent access to the same row
can be served from the row buffer itself
and it does not need to access the array.
This is called a row-buffer hit. On the
other hand, when accessing a different
row, the previous row of data must be
returned, and then the next row can be
accessed. This type of access is called a
row-buffer miss or conflict.

The memory scheduler

To mitigate inter-thread interfer-
ence, BLISS separates threads into
two groups: interference-causing and

vulnerable-to-interference. When a
large number of consecutive requests
are served from the same thread other
threads will likely stall, therefore BLISS
counts the number of consecutive re-
quests served from the same thread.
When this count exceeds a thresh-
old, BLISS places the thread into
the interference-causing group, also
called the blacklisted group, and other
threads are placed in the vulnerable-
to-interference group. BLISS has two
components: The Blacklisting Mech-
anism and The Memory Scheduling
Mechanism. The Blacklisting Mecha-
nism needs to keep track of the fol-
lowing three quantities: the Thread
ID of the last scheduled request, the
Number Of Requests Served from a
thread, and the Blacklist Status of each
thread. Before a request is issued by
the memory controller, it compares the
thread ID of the current request and the
Thread ID of the last scheduled request.
If they are the same, then the Number
Of Requests Served counter is incre-
mented. However, if they are different
then the counter is reset to zero and the
Thread ID register of the last scheduled
request is updated with the thread ID
of the current request. If the Number
Of Requests Served counter exceeds
a blacklisting threshold, which can be
four according to the research papers,
then the thread ID of the current re-
quest is blacklisted, and the counter is
reset to zero. The blacklisting informa-
tion is cleared periodically after every
Clearing Interval, which is ten thousand
cycles in the papers. In addition, this
information is used by the Memory
Scheduling Mechanism to determine
the scheduling priority of a request.
Requests from threads that are placed
in the vulnerable-to-interference group
or also called non-blacklisted threads
are prioritized, then row-buffer hit re-
quests follow because they optimize
bandwidth utilization, and finally older
requests are prioritized for forward
progress. It is important to prioritize
threads which are vulnerable to interfer-
ence because they are compute-bound,
therefore it is beneficial when they
spend less time waiting for memory
operations.

Conclusion

BLISS optimizes applications by ex-
ploiting the imbalance in number of

memory requests among the threads.
Threads that have less number of mem-
ory requests are prioritized over threads
which in comparison are more memory-
intensive. Since applications ported to
Coyote (AXPY, Matmul, Somier, SPMV)
exhibit little imbalance in terms of
number of memory requests among its
threads, it would be interesting to port
a few applications that could demon-
strate suitable use cases for the BLISS
optimization. We hope to do this in our
future work for evaluation purposes.
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