
Analysis of Data Management Policies in HPC
Architectures

Coyote: A peek
into the future of
RISC-V Super-
computers
Regina Mumbi Gachomba

Handling sparse workloads in HPC
architectures can be a bummer, but Coyote, a
performance modelling system and emulation
platform, is here to the rescue! It proposes and
analyses the viability of a decoupled
architecture (ACME) in which the memory
operations are separated from the
computation.

Picture this: you want to revamp your old desktop
computer to include new or updated features that
will optimize its performance. Lucky enough, your
system has a PCI Express bus; an expansion slot to

which you can add graphic cards, drives etc. However, there
is a threshold to how much you can reconfigure your sys-
tem because some components are heavily dependent on
the software. Furthermore, these components that you will
add to your system will probably cost a lot, and if you don’t
know how to go about the reconfiguration, you will need
to pay for the service as well. Now imagine doing this for a
supercomputer (a system that usually fits a room. . . or two).
It would take a while. . . and cost a fortune!

Nowadays, the flexibility of software-hardware co-design
is a highly sought-after feature in most computing systems.
The need for this flexibility spans across speed, scale, cost,
innovation and so much more. To address this, Mare Nos-
trum Experimental Exascale Platform (MEEP) proposes a
flexible FPGA based emulation platform, designed to explore
hardware-software co-designs for future RISC-V supercom-
puters.1 It would be easier to think of MEEP as a prototype
that can be used to test the viability of a certain framework
or architecture.

To demonstrate MEEP’s emulation capabilities, an acceler-
ator architecture called the Accelerated Compute and Mem-

ory Engine (ACME) will be incorporated into MEEP. ACME
employs a decoupled architecture, which offers a clean-cut
approach to how sparse and dense workloads are handled
in computation. While dense HPC workloads are compute-
bound, sparse workloads are memory-bound, as the vector
elements need to be gathered/scattered using multiple re-
quests. Data or workloads are considered sparse when certain
expected values in a dataset are missing, which is a common
phenomenon in the domain of High-Performance Comput-
ing (HPC) and High-Performance Data Analytics (HPDA). In
addition, this data needs to arrive in time to the required
destination. To achieve this in MEEP, a tool that can run
and test various data movement and marshalling policies to
decide on the optimal one, based on performance, is needed.
Enter Coyote.

Coyote is a new open source, execution-driven simulation
tool, that is capable of performance modelling and analysis
of the ACME architecture before it can be cast onto silicon.1

Coyote is founded on existing simulators (Spike and Sparta)
and is being improved to cater for their shortcomings, espe-
cially in the High Performance Computing domain where the
number of resources to be simulated is high, hence making
it a powerful modelling tool. MEEP and coyote is a reference
to the cartoon, Wile E. Coyote and the roadrunner, where
Coyote aspires to match the roadrunner’s using his wits. This



is precisely the goal of our simulator: To identify the best
data movement and reordering policies that ensure a better
leveraged access pattern for applications that will ensure
faster and more efficient computing.

Figure 1: The fantastic three

Introduction – The Memory Tile

During the tenure of this internship, my work has been fo-
cused on setting up the basic functionality of the memory
tile on the Coyote simulator. The memory tile houses the
MCPU (Memory CPU), which can be loosely described as the
’intelligence’ of the tile, responsible for organizing resources
that are needed to perform the different memory operations.

These resources are obtained from the microengine, the
vector address generator (VAG) and within the MCPU itself.
The microengine is responsible for generating transactions
for the instructions, whereas the vector address generator
generates the memory requests. Another impressive feature
of this memory tile is that it allows the re-usability of some
already implemented functionalities. For example, a scalar
load operation is handled like a unit stride vector load with
a loop iteration of 1.

Figure 2: The architecture of the memory tile

Objectives

The primary objective was to understand how instructions,
commands and data packets are to be received into the mem-
ory tile. Coyote allows us to create endless possibilities, even

unrealistic ones, so it was important to also define the hard-
ware constraints in the beginning so that we could obtain
realistic results.

Once an overall understanding of the architecture was
established, our goal was to simulate the different load and
store operations and analyse the output and performance.3

The types of scalar and vector operations to be simulated are
as follows:

Unit stride: for vector elements that are located/stored next
to each other in memory

Non-unit stride: for vector elements that are accessed at
regular intervals, e.g., every second or third element

Indexed: for vector elements that are accessed by their in-
dexed address. Quite similar to non-unit stride

Figure 3: Communication sequences for various scalar and
vector operations

Technical Work and Timeline

The first task involved setting up the bypass for scalar mem-
ory operations that do not need any resources from the
MCPU. The scalar memory operations are handled as cache
requests that are forwarded to the memory controller though
the bus queue.



The MCPU functionalities that would cater for the load
and store of vector operations were then set up. This entailed
the handle function, controller cycles and the queues.

The Memory Tile and the VAS tile communicate using
NoC messages. When these messages arrive at the memory
tile, they can have either of the four payloads namely,

MCPU Instruction: vector memory operations

MCPUsetVVL: instruction to set virtual vector length (VVL)
and sends it back to VAS tile

Scratchpad Requests: Commands such as free, allocate,
read, write for the scratchpad

Cache Requests scalar memory operations and memory re-
quests going to the MC

Each of these payloads are handled differently. For that rea-
son, we use an overloaded function called handle in the
source code. The handle function determines the queue and
the controller cycle that will schedule the operation.

Figure 4: An illustration of how the overloaded function
handle works

The controller cycle for incoming transactions essentially
describes what happens in the MCPU. If an MCPU instruction
is peeked from the queue, we first determine whether it is
a load or a store. If it is a load, a scratchpad request to allo-
cate some space in the scratchpad is created and sent back
to tile (refer to figure 3). If it is a store, then a scratchpad
command to load from the scratchpad is created. If the mem-
ory operation at the front of the incoming happens to be a
scratchpad reply, it means that we had earlier sent a request
to the scratchpad , and it is an indication that the subsequent
computations can now be carried out.

The controller cycle for memory requests going through
the bus queue schedules memory requests in the form of
cache requests that will be forwarded to the Memory Con-
troller, while the controller cycle for outgoing transactions
schedules outgoing transactions from the MCPU, bypass and
microengine.

Figure 5: Controller cycle for incoming transactions

Figure 6: Controller cycle for memory requests generated by
the VAG and sent to the memory controller

Figure 7: Controller cycle for outgoing transactions

A template class with the basic methods of a queue and
boolean values that check the availability of the controller
cycles was created. All the queues implement this template
class, which is in the form of a header file (Bus.hpp). The
reason for this was to reduce code replication of the push
and pop functions of all the queues in the memory tile.

In addition, The MCPUwrapper is initialised with a hash
map (unordered map) to keep track of the cache requests and
scratchpad requests that are generated from each MCPU In-
struction. The MCPU instructions are consequently initialised
with an ID parameter that we use as the key in the hash map.



Results

The Coyote simulator can now carry out both scalar vector
load and store operations in the memory tile. Address, data,
and control packets can be sent to the accelerator tile and are
received in the memory tile. However, there is still some de-
bugging to be done. For instance, when scratchpad requests
return from the memory controller, they do not arrive in the
same order they were sent. Although the simulator has con-
trol of how memory operations are scheduled in the queues,
it is still not well-defined how the operations are ordered
when they are in the MC, MCPU or the microengine.5

Figure 8: This is the number of simulations that were run
when coyote was run with four cores

Figure 9: Cache request transaction

Figure 10: setVVL transaction

Figure 11: Unit-stride vector transaction in which the data
for a vector load is returned in multiple NoC transactions.

Future Work

At the moment, the analysis of Coyote’s performance is done
mostly on the command line. This is expected to shift to the
use of a visualization tool, Paraver, which is a flexible data
browser developed at BSC, used to capture the behaviour
of parallel programs, and give a quantitative analysis of the
problem.4 Due to its flexibility, it perfectly meets the needs
of Coyote in testing the large number of data management
policies with different workloads used in HPC.

References

1 Fell, A., Mazure, D. J., Garcia, T. C., Perez, B., Teruel, X., Wilson, P., & Davis, J. D.
(2021). The MareNostrum Experimental Exascale Platform (MEEP). Supercomput-
ing Frontiers and Innovations, 8(1), 62-81

2 Perez, B., Fell, A., & Davis, J. D. (2021, February). Coyote: An Open Source Simu-
lation Tool to Enable RISC-V in HPC. In 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE) (pp. 130-135).

3 MEEP Wiki https://wiki.meep-project.eu/index.php/The_Coyote_simulator

4 Paraver: a flexible performance analysis tool https://tools.bsc.es/paraver

5 GitLab repository https://gitlab.bsc.es/meep/meep-performance-modelling/coyote-
tool/coyote-sim/-/tree/basicVersionMemoryTile

PRACE SoHPCProject Title
Analysis of Data Management Policies in HPC
architectures

PRACE SoHPCSite
Barcelona Supercomputing Center, Spain

PRACE SoHPCAuthors
Regina Mumbi Gachomba, Ankara Yildirim Beyazit
University, Turkey

PRACE SoHPCMentors
Borja Perez, Barcelona Supercomputing Center, Spain
Alexander Fell, Barcelona Supercomputing Center, Spain

PRACE SoHPCContact
Regina Mumbi Gachomba, Ankara Yildirim Beyazit
University
Phone: +90 553 7108223
E-mail: mumbigachomba254@gmail.com

PRACE SoHPCSoftware applied
C++, GitLab, Spike, Sparta, Coyote

PRACE SoHPCMore Information
https://github.com/borja-perez/Coyote

PRACE SoHPCAcknowledgement
I would like to express immense gratitude to my mentors
Alexander Fell, Rahul Shrivastava, Borja Perez and Teresa
Cervero for their valuable guidance through my tasks in
the project. I also had the great pleasure of working with
my project partner, Aneta Ivaničová and the whole MEEP
team at BSC. Thanks to PRACE for organising this
valuable programme.

PRACE SoHPCProject ID
2101

Regina Mumbi Gachomba

https://wiki.meep-project.eu/index.php/The_Coyote_simulator
https://tools.bsc.es/paraver
https://gitlab.bsc.es/meep/meep-performance-modelling/coyote-tool/coyote-sim/-/tree/basicVersionMemoryTile
https://gitlab.bsc.es/meep/meep-performance-modelling/coyote-tool/coyote-sim/-/tree/basicVersionMemoryTile
http://summerofhpc.prace-ri.eu/analysis-of-data-management-policies-in-hpc-architectures
mailto:mumbigachomba254@gmail.com
mailto:borja.perez1@bsc.es
mailto:alexander.fell@bsc.es
mailto:mumbigachomba254@gmail.com
https://github.com/borja-perez/Coyote

