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1. Execuধve Summary

This document presents all the current releases of the MEEP Sođware Stack. It includes all the

levels involved in the toolchain as well as the target benchmarks we plan to evaluate at the end of

the project. As described in previous deliverables, the ACME EA plaĤorm can be used following

two different approaches: 1) A stand-alone processor/accelerator booধng Linux (ie, self-hosted);

2) A supporধng accelerator device aħached to a host (ie, offloading). The document focuses on

the self-hosted mode, while we also explore the opportuniধes of the offload mode. When no

explicitly specified, the contents will refer to the self-hosted mode.

The Operaধng System, compiler, runধmes, and containerizaধon support were already introduced

in deliverable D5.2 Linux with iniࣅal host interface release, based on the requirements document [33].

The set of benchmarks was also introduced in deliverable D5.1 Benchmark suite of HPC applica-

onsࣅ [32].

The integraধon of all these components aim to allow ACME EA programmers to exploit all the

system capabiliধes, being able to deploy their own use cases, and to obtain useful informaধon

to infer the performance behaviour. As described in the Descripধon of Acধon (DoA): ”all the

applicaࣅon that have been idenࣅfed are ported to run on top of the emulaࣅon plaĤorm”; and for each

applicaধon’s entry we also describe the metric of interest and its evaluaধon methodology (from

DoA: ”The final phase will focus on applicaࣅon performance evaluaࣅon and debugging”).

Following secধons present a brief summary of the status of these components at the current

stage of the project.

1.1. Operaধng System

The Operaধng System presents the updates on the support for communicaধon with the driver

for Ethernet over PCIe and the driver for Ethernet over QSFP. The PCIe uses the Xilinx QDMA

driver and the Xilinx Open NIC driver, both deployed on the host side; and the Xilinx Linux kernel,

on the RISC-V side. The QSFP driver allows FPGA to FPGA communicaধon and it has been

implemented based on the driver developed in the EPI project, with a DMA-based soluধon and

the ability of scaħer-gather.

1.2. Compiler support

The compiler includes the contribuধon to the RISC-VVector Extensions, which target the VPU

accelerator and the Systolic Array extensions. With respect to the Vector Extension we have

explored to main lines: one based on assessing whether prefetching techniques are feasible to

inform the CPU about memory accesses of the vector code and another one exploiধng loop

transformaধons to improve the use of the vector registers. Although prefetching hints looked like

to be a reasonable mechanism to convey memory accesses (specifically about the vector length)

informaধon to the vector processor, the results obtained from our implementaধon suggest this is

not an effecধve way to inform the CPU about the memory characterisধcs of vectorised code.

The loop transformaধon techiques are sধll on development and we aim to impact on the locality
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characterisধcs of the computaধonal kernels.

The Systolic Array extensions present a set of new custom instrucধons targeধng the Systolic Array

accelerators. It includes a set of new registers, and new computaধonal and memory operaধons.

Both extensions have been implemented in the LLVM compiler and distributed as a source code

repository as well as a RPM Fedora package. The compiler distribuধon also includes the OpenMP

runধme library used to provide parallelizaধon services to the OpenMP applicaধons.

1.3. Runধmes and libraries

The Linux distribuধon includes several libraries to complete the HPC-AI ecosystem: the MPICH

MPI library, the COMPSs/PyCOMPSs workflows, the TensorFlow Lite and Apache Spark frame-

works, and the BLIS and NumPy libraries. All of them available as Fedora installable packages.

COMPSs [30] is a task-based programming model and runধme system to implement parallel

distributed workflows. Supported applicaধons are executed in a master-worker mode, where the

workflow is executed in the master process and the tasks are executed in the worker processes.

Apache Spark [11] is an open-source unified analyধcs engine for large-scale data processing. It

provides an interface for programming cluster with implicit data parallelism and fault tolerance.

Either COMPSs or Apache Spark relies on top of the Java Virtual Machine (JVM), consequently

we have also included this component as part of the sođware stack.

TensorFlow [9] is a free and open-source sođware library for Machine Learning (ML) and Arধficial

Intenlligence (AI) applicaধons. TensorFlow Lite [12] provides the inference engine and it is

designed focusing on edge environments.

BLIS [38] is the linear algebra library we recommend in the MEEP ecosystem. We have adapted

it in order to exploit the vector capabiliধes of the system by extending the OpenMP annotaধon

to also target SIMD direcধves. We also put forward an exploraধon of this library with an offload

mechanism to execute BLIS services in environments that are characterized with one or mulধple

accelerators.

NumPy [35] is a Python package that has support for scientfic compuধng. It provides sup-

port for different mulধdimensional objects, and mathemaধcal funcধons. NumPy leverages the

opধmizaধons implemented in the aforemenধoned custom BLIS library.

1.4. Containerizaধon support

With respect to the containerizaধon support, we have selected three container engines to validate

our work: Moby, Podman and Singularity. Moby is the open source version of the Docker stack,

which is the most popular container engine nowadays. Podman, also very popular, because it has

a compaধble interface with Docker. Finally, Singularity is the most popular container engine in

the HPC field because it allows tradiধonal HPC resource managers and devices.
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1.5. Benchmark descripধons

We also layout a set of benchmarks that are used to analyse their behaviour on the available

MEEP environments. These benchmarks range from system benchmarks, such as Stream, EPCC-

OpenMP and EPCC-OpenMP/MPI to common HPC benchmarks: HPL, HPCG, FFTXLIB, Cloud-

Microphysics and Advecধon-MPDATA [32].

In the Data Analyধcs side, we include the TensorFlow Lite models, which are a set of Neural

Networks (NN) representaধve of the current Data Analyধcs architectures. Among the set of

models we found: MNIST, VGG-19, NesNet50, and MobileNet. Besides the TensorFlow models

we also evaluate the Epistasis applicaধon running on top of the Apache Spark framework. The

applicaধon can be configured by means of different parameters which allow to run vectorial and

non-vectorial code, change the number of nodes, the problem size (and its internal parধধons),

etc.

In the Workflow benchmarking side, we have two different workloads. One based on the

Distributed Compuধng Library (Dislib), another based on the Hyperdimensional Compuধng

framework. Both use cases leverages the COMPSs/PyCOMPSs runধme and will allow to test the

behaviour of this kind of applicaধons using the MEEP architectures.

1.6. Offload mode and mulধ-devices

This secࣅon refers to the offload mode.

We have implemented a prototype infrastructure supporধng OpenMP offload between the

Intel Host, acধng as the applicaধon runner, and the RISC-V on the FPGA, acধng as the device

accelerator. Thus, the LLVM compiler is invoked to generate x86_64 code for the Host and

RISC-V rv64imafdc code for the accelerator (i.e. the target regions).

The support for OpenMP target on the Host side is implemented as a plugin to the libomptarget

library. In our case, we have adapted the plugin developed by FORTH in the EPI project to work

with the RISC-V accelerator on the FPGA.

One of the possible scenarios considered earlier in the MEEP project was that a single node could

offer many accelerators where work could be offloadd to. This led us to idenধfy a gap in OpenMP

support for offloading. Aligned to this, we have proposed an extension to OpenMP in which we

introduce a new OpenMP construct called target spread. Instead of receiving a single device
clause, the spread construct has a devices clause which represents the set of devices that will
execute the offloaded region.

1.7. Sođware distribuধon: releases

One important aspect of the current sođware reporধng period is to make all the sođware stack

publicly available for downloading by means of releases. In the MEEP project the OS will be

distributed as binary images which can be installed on the development board.

Once the users have a booধng Operaধng System running on the ACME EA plaĤorm, they will be
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able to use other sođware components by means of three different types of releases: 1) Source

code repositories; 2) RPMs packages; and 3) Containerized images.
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2. Introducধon

This document presents all the iniধal releases of the Sođware Stack components for the MareNos-

trum Experimental Exascale PlaĤorm (MEEP). It includes all the levels involved in the toolchain

(i.e., the Operaধng System, the compiler, and containerizaধon support); as well as the applicaধons,

benchmarks and kernels we plan to evaluate at the end of the project (i.e., system, HPC, Data

Analyধcs, and workflows).

The Operaধng System, compiler and containerizaton support were already introduced in deliv-

erable D5.2 Linux with iniࣅal host interface release, based on the requirements document. In this

document we will report the status at this stage of the project.

The set of benchmarks was already introduced in deliverable D5.1 Benchmark suite of HPC

applicaࣅons. In this document we will establish the objecধves we plan to reach using them

in the MEEP Project (i.e., performance evaluaধon or co-design with hardware/compiler). Also,

for each of the componets targeধng the performance evaluaধon, we will describe the set of

metrics we want to acquire and which specific aspect of performance we want to test: memory,

compute, mulধ-thread, mulধ-process, or vectorial will be the most meaningful ones. We will

finally report any modificaধon/porধng we have introduced in these codes in order to adapt them

for the purposes of the study or the execuধon on the ACME plaĤorms.

2.1. Type of releases

One important aspect of the current sođware reporধng period is to make all the sođware stack

publicly available for downloading. This deliverable will describe, for each of the presented

sođware items, how they will be released.

The most important element on the Sođware Stack is the Operaধng System. It includes the OSBI

and the File System based in the Fedora distribuধon. In the MEEP project theywill be available as

binary images which can be installed on the development board. The released OSwill also contain

the fundamental packages recommended to work on top of the ACME EA plaĤorm. These files

can be found on the MEEP OS Layer, which also describes how these files can be installed.

Once the users have a booধng Operaধng System running on the ACME EA plaĤorm, they will be

able to use other sođware components by means of three different types of releases:

• Source code repositories: from where users may download the code and build it in their

own plaĤorm.

• RPMs packages: that users may install or update from the repository sourced in their OS

Fedora distribuধon.

• Docker images: that users may execute to use specific pre-configured sođware components

(eg, TF Lite).
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Figure 1: MEEP Execuধon Modes: self-hosted vs offload.

2.2. Execuধon modes

The ACME EA plaĤorm can be used following two different approaches (see D5.2 Linux with iniࣅal

host interface release, based on the requirements document; Secধon 2.2):

1. A stand-alone processor/accelerator booধng Linux (ie, self-hosted). In this execuধon mode,

the ACME EA becomes part of the HPC cluster;

2. A supporধng accelerator device aħached to a host. In this case the host becomes part of

the HPC cluster, and it offloads parts of the computaধon to the ACME EA device.

Figure 1 illustrates these two approaches and how the HPC cluster is organized around the ACME

EA computaধonal system. As described in the previous deliverable, the main objecধve of the

MEEP project is to target the self-hosted accelerator but it will also explore the offload execuধon

mode and the opportuniধes this approach enables.

The rest of this document is organized as follows: Secধons 3 to 8 refer to the self-hosted mode

(ie, Operaধng System, Compiler, Runধmes/Libraries, Containerizaধon support, Performance

methodology, and Benchmarking), Secধon 9 describes all the components related with the MEEP

offload-mode, and Secধon 10 presents the conclusions and summarizes all the sođware releases.
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3. Operaধng System

The informaধon about the Operaধng System has been already presented in MEEP Deliverable

D5.2: Linux with iniধal host interface release, based on the requirements document [33]:

• Linux kernel boot and the boot flow process for ACME

• The Buildroot, Debian and Fedora porধngs

• The ACME memory map, Pmem disk, and Tun-on-Map basic networking

In this deliverable we present the updates on the support for communicaধons with the driver

for Ethernet over PCIe and the driver for 10/100Gbit Etherner over QSFP. More details of the

Ethernet implementaধon can be found on Secধon 3 of the MEEP Deliverable D6.3: Emulated

accelerator second release with full capacity of inter-accelerator communicaধon [34].

3.1. Driver for Ethernet over PCIe

The FPGA infrastructure for ACME includes the IP dealing with the QDMA transacধons. This

infrastructure was iniধally only used to transfer the operaধng system and the filesystem im-

age to the board. Later on, we used it from the user-level to implement the Tun-on-mmap

communicaধons, allowing a first implementaধon of Ethernet over PCIe.

The next development has been to move that communicaধons infrastructure inside the kernel.

This has been done in both sides, the host and the RISC-V. In order to do this, we used the

following plaĤorms:

• [Host side] The Xilinx QDMA driver source code (obtained from Xilinx DMA IP Drivers repo)

• [Host side] The Xilinx Open NIC driver source code (obtained from Xilinx Open NIC Driver

repo)

• [RISC-V side] The Xilinx Linux kernel source code (obtained from Xilinx Linux repo)

On the FPGA infrastructure we have included a memory area in the I/O space that provides

a non-cachable zone for data exchange between the QDMA driver on the host side, and the

RISC-V. This infrastructure is described in Secধon 4.1 of the MEEP Deliverable D6.3: Emulated

accelerator second release with full capacity of inter-accelerator communicaধon [34].

3.1.1. Integraধng the ONIC driver on QDMA

On the host side, we have taken advantage of Xilinx publishing the Open NIC driver, to use it as

the basic structure to incorporate it on the QDMA driver. The new QDMA driver infrastructure

developed in the MEEP project includes the support for Ethernet over PCIe.

In order to implement this new feature inside the QDMA driver, we have incorporated parts of

the Open NIC driver, specifically:
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• The creaধon of the Ethernet device.

• Enabling the DMA transfers of data from/to the kernel-mapped memory.

• The implementaধon of the Tun-on-mmap protocol from inside the kernel.

This code is available in the MEEP QDMA driver in this repository: MEEP QDMA+ONIC driver.

3.1.2. Developing the RISC-V driver counterpart

The RISC-V driver counterpart has been implemented based on the Xilinx Open NIC source code,

by replacing the access to the DMA system to the use of the shared memory area in I/O space.

Being fully in the I/O space we ensure that the memory accesses from the host side through

the QDMA+ONIC driver and the RISC-V accesses through the in-kernel /dev/mem device are

coherent, and there are no cache-related issues.

This code has been incorporated in the Xilinx Linux version on the MEEP Lagarto Openpiton SDK

repository.

3.2. Driver for 10Gbit Ethernet over QSFP

Providing Ethernet on the QSFP connecধon involves the RISC-V system running on the FPGA,

that will be connected to another FPGA board in a point-to-point connecধon, or to a local switch.

The driver running on Linux on the RISC-V side has been implemented based on the driver

developed in the EPI project, with a DMA-based soluধon and ability for scaħer-gather. The driver

accesses 2 types of data. On the one side, it uses DMA descriptors mapped onto non-cachable

memory, ensuring that the DMA engine works properly.

On the other side, the driver receives and interacts with data buffers from the Linux kernel, on

regular cacheble memory. As the Openpiton infrastructure is not providing cache flushing for

coherency with memory accesses coming from the DMA engine, we have implemented a simple

memory filling rouধne to try to flush the cache of previously accessed data. This soluধon is used

right before seষng the DMA up for transfering a packet, and it provides a temporary soluধon

while we find another opধon to use.

This code is available in the MEEP Lagarto Openpiton SDK repository.

The Ethernet IP for the QSFP connecধon is described in Secধon 4.2 of theMEEPDeliverable D6.3:

Emulated accelerator second release with full capacity of inter-accelerator communicaধon [34].

3.3. Driver for 100Gbit Ethernet over QSFP

We have recently verified that the same driver that we use for 10Gbit Ethernet will support

100Gbit Ethernet communicaধons. The only difference is that the 100Gbit IP hardware requires
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an addiধonal iniধalizaধon that will be implemented in the 10Gbit Ethernet driver, allowing

100Gbit transfers.
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4. Compiler support

This secধon describes all the development carried out during the MEEP project aimed at support-

ing the MEEP architecture. This work includes contribuধons for the RISC-VVector Extension,

which targets the VPU accelerator component of MEEP, and the Systolic Array extensions. This

work is mainly based on the LLVM infrastructure.

4.1. Infrastructure

The LLVM Project is a collecধon of modular and reusable compiler and toolchain technologies

under open source permissive licences. The most commonly known components of LLVM are

the Core libraries (commonly known as LLVM) and the Clang C/C++ front end.

LLVM is based around the idea of a common intermediate representaধon called LLVM IR. This

representaধon is powerful enough to cover a larger number of analyses and transformaধons that

can be reused among different architectures. As a pracধcal compiler, though, LLVM includes

other representaধons that are used in specific parts of the compilaধon process. Clang has its own

AST (Abstract Syntax Tree), the Codegen library of LLVM Core uses a low level representaধon

called Machine IR, and the MC library of LLVM Core uses an even lower-level representaধon for

encoding (assembly) and decoding (disassembly) instrucধons.

The work done on MEEP is built on top of the compiler developed in EPI SGA-1 which was

extended in that project to support the RISC-VVector Extension version 0.7.1 as implemented

by the microarchitecture of the Vector Processor.

4.2. RISC-VVector Extension opধmisaধons

This secধon describes contribuধons that were done in the MEEP project with the goal to improve

the code generaধon and the applicability of the RISC-VVector Extension.

4.2.1. Prefetching

The RISC-VVector Extension has been designed so it can adapt many implementaধon scenarios.

This led to a design that is vector-length agnosধc: the ISA does not prescribe a specific size for

the vector registers. At the same ধme it provides enough funcধonality so it is possible to use the

same sequence of vector instrucধons in implementaধons with different physical vector length.

An outcome of the work developed in the EPI project was a loop vectorisaধon strategy that

is fully vector length agnosধc. The compiler emits a vectorised loop that requests the CPU to

process, using vector instrucধons, as many elements as the remaining iteraধons. This is called

the applicaࣅon vector length. The CPU returns the available vector length it can honour based on

the specific vector register size of the implementaধon.

The RISC-VVector Extension defines what values the vector length returns but the code emiħed
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Applicaধon Cycles NP Cycles P ∆Cycles (%) #Insns NP #Insn. P ∆#Insns (%) R Miss NP R Miss P Delta R Miss (%)

Blackscholes 35709 35077 -1.77% 71109 72237 1.59% 251 243 -3.19%

Somier 49101 48920 -0.37% 73472 73536 0.09% 373 301 -19.30%

SpMV 4727 5359 13.37% 3516 3672 4.44% 172 183 6.40%

Matmul 3115 3364 7.99% 905 1040 14.92% 96 106 10.42%

Table 1: Results without prefetch (NP) and compiler introduced prefetch (P).

by the compiler is fully agnosধc. So a plausible scenario for an architecture that extends the

RISC-VVector Extension is to further this idea and let the CPU choose the vector length it deems

ideal for a given iteraধon. As a way to communicate to the CPU what memory is going to be used

by a loop, we looked at prefetch instrucধons, which in addiধon to do prefetch by themselves (of

a future memory access). Not that the instrucধons are used in this context as hints to the CPU

and not necessarily as a mechanism to enforce the memory prefetch.

The RISC-V community proposed a new set of instrucধon extensions called the RISC-V Base

Cache Management Operaধons ISA Extensions (Zcmo). For the purpose of this exploraধon we

only implemented support for the prefetch.r instrucধon in the compiler. We then modified

LLVM so the IR intrinsic llvm.prefetch could emit this instrucধon. For the purpose of evaluaধon
we modified the Coyote emulator so it could recognize the instrucধon and emulate a prefetch

from the cache.

Then we implemented a simplified version of the approach described in [13] so the compiler

inserted llvm.prefetch in loops containing set vector length instrucধons andmemory references.
This was evaluated against a small set of benchmarks to assess the feasibility of the technique.

The results are summarised in Table 1 and they yield mixed, inconclusive, results. All of them

expose, expectedly, extra instrucধons executed, even if moderately like in the case of the Somier

applicaধon. Some applicaধons show a small improvement in number of cycles, which suggests

their performance improves while others show a medium increase in cycles. The variaধons of

the cycles correlates with the change of read misses (“R Miss” column) although this correlaধon

is not totally clear. For instance, Somier reports a relaধvely large reducধon of read misses but

those do not translate into a much more improved performance, specially given that the number

of extra instrucধons in the prefetch version is small.

It seems reasonable to conclude that the sođware prefetching mechanism based on the evaluated

sođware prefetching algorithms, might not be the most suitable way to convey memory access

informaধon from sođware to the hardware.

4.2.2. Loop transformaধons for temporal locality

MEEP architecture features a vector ISA that provides a large (32) number of registers. Tradi-

ধonally, to keep the funcধonal units busy, applicaধons need to make sure the register pressure

is high while reducing the memory accesses. Minimising the number of memory accesses and

trying to maximise the register uধlisaধon is a similar problem to exploit temporal locality as much

as possible.

Loop transformaধons are known to be able to dramaধcally impact the locality characterisধcs of

computaধonal kernels. We want to see if the applicaধon of these techniques is also useful to

minimise memory accesses.
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We used the Somier applicaধon as a case study. It simulates a 3D grid of of springs (like a three

dimensional box spring). For each ধme step, using the posiধon of the nodes, elasধc forces are

computed, then acceleraধons, velociধes and then the new posiধons. The three magnitudes,

posiধon, forces, acceleraধon and velociধes, are stored independently, and computed, for each

node, one ađer the other. Lisধng 1 is a high level descripধon of the simulaধon run by Somier.

foreach (t : timestamp) {
foreach (p : nodes) {

forces[p] <- compute_forces(position[p])
}
foreach (p: nodes) {

accels[p] <- compute_accelerations(forces[p])
}
foreach (p: nodes) {

velocs[p] <- compute_velocities(accels[p], t)
}
foreach (p: nodes) {

positions[p] <- compute_positions(velocs[p], t)
}

}

Lisধng 1: High-level scheme of the simulaধon implemented in Somier

Before implemenধng them in the compiler, we wanted to determine if the loop transformaধons

would be favourable. Because the nodes are laid out in a 3D grid, each loop for nodes in Lisধng 1

is actually a 3-nested loop. The first thing we did was to linearise the three loops, called loop

flaħening, into a single loop that traverses all the nodes. Then we applied loop fusion. So we

ended with a scheme like in Lisধng 2.

foreach (t : timestamp) {
foreach (p : nodes) {

forces[p] <- compute_forces(position[p])
accels[p] <- compute_accelerations(forces[p])
velocs[p] <- compute_velocities(accels[p], t)
positions[p] <- compute_positions(velocs[p], t)

}
}

Lisধng 2: Somier high level scheme, ađer loop fusion

Ađer this change, though, the code is sধll using memory accesses to store and then load later.

This exposes temporal locality so the cache can resolve these accesses. But we would like to

avoid involving the memory system here. So we implemented a pass in the compiler that can

remove those clearly redundant memory accesses.

Lisধng 3 shows the final loop. Figure 2 shows the reducধon of loads in each iteraধon visible in a

trace generated by vehave, a trap-based emulator developed in the EPI-SGA1 project. The trace

shoes we are able to remove 6 of the vector loads (vle64) in every iteraধon.

foreach (t : timestamp) {
foreach (p : nodes) {

reg_forces := compute_forces(position[p])
forces[p] <- reg_forces
reg_accels := compute_accelerations(reg_forces)
accels[p] <- reg_accels
reg_velocs := compute_velocities(reg_accels , t)
velocs[p] <- reg_velocs
positions[p] <- compute_positions(reg_velocs , t)
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}
}

Lisধng 3: Somier high level scheme, with reduced load accesses

Figure 2: At the leđ, the original loop in Lisধng 2. At the right the loop in Lisধng 3.

4.3. Systolic Array

TheMEEP architecture includes in its design two systolic arrays that act as accelerators. However,

rather than presenধng the accelerators like compute engines that must be accessed via I/O,

MEEP chooses the path of integraধng them in the ISA.

For this purpose we had to extend the RISC-V ISA with custom instrucধons that would allow

operaধng the systolic array. This extension has been designed with some degree of flexibility in

mind and it is inspired in some way by the RISC-VVector Extension

• The ISA provides a set of 32 systolic array registers per systolic array.

• Operaধons use the systolic array register as explicit operands of the systolic array instruc-

ধons.

• The ISA defines two operaࣅonal lengths.

• Systolic array operaধons, including memory accesses, receive the operaধonal lengths as

implicit operands.

• The ISA defines a generic operaধon that each Systolic Array maps to the implemented

funcধon.

We implemented this extension in the LLVM compiler as assembly and disassembly support for

the new instrucধons and systolic registers introduced. This required extending the MC layer of

LLVM, whose task is to assemble (encode) and disassemble (decode instrucধons). Given the low

level nature of the work carried out by the systolic arrays, there is no plan to implement a C/C++

intrinsic interface for this extension.

Refer to the Appendix A for a descripধon of the current specificaধon of this extension as imple-

mented by the compiler

D5.3 v1.0 18 / 91



4.4. Mulধ-devices support

The mulধ-devices proposal, described in more detail in Secধon 9.2.1, was implemented in the

clang C/C++ front-end of LLVM. Someminimal changeswere also needed in the OpenMP runধme

of OpenMP. The implementaধon is available at MEEP Compilers repository.
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5. Runধmes and Libraries

In this secধon we present the addiধonal packages, included in the Linux distribuধon, to com-

plete the HPC-AI ecosystem: the MPICH MPI library, the COMPSs/PyCOMPSs workflows, the

TensorFlow Lite and Apache Spark frameworks, and the BLIS and NumPy libraries. All of them

available as Fedora installable packages.

5.1. Message Passing Interface

The Fedora 33 distribuধon comes with the MPICH MPI library as an installable package. MPICH

is version 3.3.2. We install the package by default when generaধng the Fedora filesystem image.

We tested the MPI implementaধon with the HPCC - HPC Challenge benchmark, version 1.5.0.

The benchmark has been run with 1, 2 and 4 cores on a single Ariane-based node and we found

no issues while running this MPI applicaধon.

Running MPI is achieved with the command: mpirun -iface lo -np 2 <applicaধon-binary> <appli-

caধon arguments>

The MPI runধme is available at MEEP Runধmes webpage

5.2. OpenMP runধme

The OpenMP support was added through LLVM. The LLVM compiler and OpenMP support library

(libomp.so) were imported from the EPI project.

The LLVM compiler allows to run OpenMP applicaধons in the host server (Intel-based), and the

RISC-V on the FPGA. On the RISC-V, we have run the STREAM benchmark to test the OpenMP

support.

Addiধonally, we have implemented a prototype version of the OpenMP offload to allow the Intel

host to spawn parallelism onto the RISC-V cores. This implementaধon is presented in secধon 9.

5.3. COMPSs runধme

In this secধon, we present how the COMPSs runধme has been ported to support ACME EA

plaĤorms. COMPSs is a task-based programming model and runধme system to implement

parallel distributed workflows. Despite the core of the COMPSs runধme is wriħen in Java it

also offers bindings for C++ and Python (PyCOMPSs). These bindings interact with the runধme

using Java Naধve Interface. COMPs/PyCOMPSs workflows are executed in a master-worker

mode, where the workflow is executed in a master process and the tasks are executed in the

worker processes which can be spawned in the same or different compuধng nodes. The spawn

of the processes is performed by Secure Shell and the communicaধon between master and

worker nodes are performed by TCP/IP. The COMPSs runধme is integrated with Extrae in order
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to generate execuধon traces for performance analysis.

To enable the execuধon of COMPSs/PyCOMPSs applicaধon in the ACME EA prototype, the

following main dependencies must be supported in the RISC-V 64 bits architecture and the ACME

EA has to support profiling with Extrae and networking through TCP/IP protocol. The details

about how the networking has been provided in the ACME EA prototype is explained in Secধon 3,

and the profiling support in ACME EA is explained in Secধon 7.1 Regarding the first topic, the

Python interpreter and the Secure Shell client and servers are available in the base Fedora 33

distribuধon, but the problemaধc dependency in this case was the Java support.

At the beginning of the Project COMPSs was requiring Java 8, however there is not a Java Virtual

Machine (JVM) version 8 working for a RISC-V 64 bit architecture. In the Fedora distribuধon, we

found a limited JVM for version 11. It is a ZeroVM implementaধon which does not include all the

features and with limited performance because it do not include the Just-In-Time compiler. In

the OpenJDk community there is a project for porধng the full OpenJDK JVM for RISC-V 64 bits

architecture which was starধng in Java version 14. So, the main effort to port COMPSs to the

ACME EA plaĤorm and other RISC-V architectures was devoted to support newer Java versions.

It was a tedious task because there was a major change in the Java releases since version 9.

Java EE and some other features included in the Java distribuধon where removed and ported

to external projects, and the organizaধon of the JVM libraries has also changed affecধng the C

and Python bindings. All these changes where iniধally ported to COMPSs version 2.10.1 and

consolidated in version 3.0 and 3.1.

Source code of the COMPSs runধme including RISC-V 64 bits support can be found in COMPSs

github repository and the RPM packages can be found in the MEEP RPM repository.

5.4. TensorFlow Lite framework

In this secধon we present howwe ported the TensorFlow Lite runধme to make it work on Sifive

HiFive Unmatched board and ACME-EA plaĤorms successfully. TensorFlow Lite can be build

either with bazel - which currently does not have support for RISC-V - or with CMake. Bazel was

preferred as it is the main build system for the TensorFlow community. However it did not have

support for RISC-V. Support was planned and some proposals to enable it were publicly made.

We spend some effort on aħempধng to enable support following the suggested guidelines but

eventually we found it was taking too long and switched to CMake.

To port TensorFlow lite we have first modified the basic build scripts to acধvate the following

flags on GCC compiler: ARMCC_FLAGS = " − funsafe −math − optimizations" and add
the following opধons to the cmake command line: -DCMAKE_SYSTEM_NAME=Linux -DCMAKE_-

SYSTEM_PROCESSOR=riscv64 -DTFLITE_ENABLE_XNNPACK=ON.

The default CMake target builds a C library, so it was only possible to run benchmarks based

on C. But our benchmarks were wriħen in python. So we had to also compile and install a

pip package for python. To build tensorflow lite as a pip package we have added the riscv64

opধon on the script tensorflow/tensorflow/lite/tools/pip_package/build_pip_package_with_cmake.sh.

The modificaধon consists on adding a switch case for riscv64 and correctly seষng the variable

WHEEL_PLATFORM_NAME to riscv64.

Most of the effort was devoted to finding the combinaধon of flags that worked adequately. As
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it happened enabling some flags avoided some compilaধon errors however induced errors in

other pieces of the sođware stack. Ađer invesধgaধons we found out the combinaধon of flags

and operaধng system packages that needed to be installed so the runধme compiled successfully.

Thus, addiধonally we need to install the following packages on the operaধng system:

• pyধnd11. It is needed to set appropriately the INCLUDE_PATH environment variable.

• python3-dev

• libboost-all-dev

• glibc2.33

TensorFlow Lite is offered as a RPM package containing the runধme with the modificaধons made

on MEEP context. It can be found at: MEEP Toolchain webpage

5.5. Spark framework

Spark heavily relies on JVM for its core and encountered the same problems regarding the

Java requirements in COMPSs. Once that was solved and java runধme was enabled no more

modificaধons were needed to make Spark runধme work on MEEP systems. Spark is released as a

RPM package containing the runধme and can be found at MEEP Toolchain webpage.

5.6. BLIS library

BLIS stands for BLAS-like Library Instanধaধon Sođware [38] and is the library employed to

give applicaধons the linear algebra funcধonaliধes that they required. In the context of the

MEEP project, we explored BLIS in two different versions: Self-hosted and Offload (for more

informaধon on MEEP execuধon modes, we refer the reader to deliverable D5.2, MEEP execuࣅon

modes secࣅon). Moreover, we provide the BLIS Self-hosted version to users, however the BLIS

offload version was targeted only as an exploraধon task, hence, there is no BLIS offload release.

The descripধon/results of this exploraধon can be found at Secধon The MEEP offload-mode,

sub-secধons BLIS single-device approach and BLIS mulࣅ-device approach.

Descripধon

The BLIS self-hosted version provides and explores the capabiliধes of execuধng this library

naধvely in the accelerator. Here, we focus on two major features: 1) parallelism offered by

the OpenMP programming model and also 2) the capabiliধes of the compiler to issue vector

instrucধons when encountering SIMD direcধves.

Regarding the first feature, we are relying in the infrastructure already present and that applies the

OpenMP programming model for exploring the parallelism capabiliধes of the plaĤorm. Some of

the BLAS levels offered by BLIS do not leverage the mulধ-thread capabiliধes present in the library.

For instance, level 1 BLAS rouধnes (vector addiধon, axpy among others) lack this capability. On

the other hand, level 3 BLAS rouধnes, such as matrix mulধplicaধon, take advantage of this feature

and performance improvements can be seen.
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For OpenMP SIMD direcধves, BLIS also renders this capability, provided that, during the configu-

raধon phase, BLIS is able to detect that the compiler supports this direcধve. Unfortunately, BLIS

is not always able to detect this feature, and for this reason we are modifying the implementaধon

and explicitly add simd direcধves.

Modificaধons

As previously menধoned, instead of relying on this BLIS verificaধon mechanism, we modified the

source code to explicitly try to vectorize certain parts of the code if the compiler is able to. To

highlight the nature of these modificaধons, check the next example.

Original source code:

// ...
PRAGMA_SIMD \
for ( dim_t i = 0; i < n; ++i ) \
{ \

PASTEMAC(ch,addjs)( chi1[i], psi1[i] ); \
} \
// ...

Modified source code:

// ...
_Pragma("omp␣simd") \
for ( dim_t i = 0; i < n; ++i ) \
{ \

PASTEMAC(ch,addjs)( chi1[i], psi1[i] ); \
} \
// ...

Library version and configuraধons

The version of this library used in MEEP is based on BLIS version 0.9.0, commit 4603324e [21].

Interesধngly, the BLIS library provides a set of configuraধons that implement opধmizaধons for a

specific set of plaĤorms. However, we cannot take advantage of these opধmizaধons because

there is no configuraধon for RISC-V plaĤorms. For this reason, we have to rely on the generic

configuraধon that uses the set of generic kernels and do not have opধmizaধons in place that we

can take advantage of.

In MEEP we explore and test this library in a large set of compuধng plaĤorms with different

features and behaviours. For this reason, we provide and maintain a BLIS version per plaĤorm

because each onemight need a different type of configuraধon. To this end, in theMEEP repository

for BLIS, we have a branch for each of the necessary configuraধons and plaĤorms. This allows

to rapidly modify, adapt and deploy a parধcular version if we find a problem or improvement.

On the down side, we pay the price of having a large set of versions (branches) that need to be

maintained.

Last but not least, BLIS is available to users in two different flavours:

• BLIS source code per plaĤorm;

• BLIS RPM package: RPM packages for ACME-EA releases.

All of these releases are available at MEEP Toolchain webpage.
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5.7. Numpy

Numpy is a Python package that has support for scienধfic compuধng. It provides efficient

support for different mulধdimensional arrays, and mathemaধcal funcধons. In order to get benefit

of Numpy in the MEEP prototype we have to enable this python package to work with the

custom BLIS library. Numpy uses the BLAS and LAPACK interfaces to access to the efficient

implementaধon of mulধdimensional array sand linear algebra funcধons. To enable Numpy to run

with the MEEP BLIS library, it has been installed from sources which can be found in the Numpy

Github repository.

Before compiling Numpy, we have to enable LAPACK to use the MEEP BLIS library. We can

compile one of the LAPACK implementaধons from source code linking it with the MEEP BLIS

library. In our case, we have used the LAPACK reference implementaধon which can be found

in the LAPACK github repository. To indicate the locaধon of the BLAS library used in LAPACK

you have to modify the make.inc seষng the MEEP BLIS library path in the variable BLASLIB (eg.

BLASLIB = /apps/riscv/ubuntu/blis/lib/libblis.so). Then you just need to follow the normal cmake

installaধon.

Once we have LAPACK compiled with BLIS, we need to indicate the locaধon of the LAPACK

libraries and the BLIS library to the Numpy installaধon configuraধon. First, we had to edit the

cite.cfg and set the BLIS library path at the [blis] tag. Once the path has been set, we have to

compile Numpy specifying the locaধon of the LAPACK in the LAPACK variable before execuধng

the installaধon command. An installaধon command example can be found below.

LAPACK=/home/user/.local/lapack/liblapack.so ATLAS=None CFLAGS='-O3'\
python3 setup.py install --user.
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6. Container support

In this secধon, we present the work performed to allow the execuধon of containers in the ACME-

EA plaĤorms. We have selected three container engines to validate our work: Moby, Podman

and Singularity. Moby is the open source version of the Docker stack which is the most popular

container engine. Podman is also a very popular engine because has a compaধble interface with

Docker but with a simplified execuধon in rootless mode. Finally, Singularity is the most popular

container engine in the HPC world because it easily works with tradiধonal resource managers

and devices

6.1. Enabling container support on ACME-EA

The work for enabling the container support for the ACME-EA plaĤorm is organized in two main

tasks: one for tesধng and enabling the container engine sođware; and another to test and enable

the required kernel modules are available in the system and properly configured.

Regarding the first task, we have check if the container engines or required dependencies were

available in the Linux reference distribuধon for the project (Fedora-33) for the RISC-V 64-bits

architecture. All three engines are implemented with Go, so it is required in the three cases. We

did not find a working version of the container packages in the distribuধon and the version of

the Go packages provided was not fulfilling the engines requirements. To fix it, we generate new

RPM packages for the dependencies Go and runc as well as for Moby, Podman and Singularity

which can be found in the MEEP RPM repository. The modified specs for generaধng this RPMS

can be found in the MEEP OS RPM specs gitlab repository.

For enabling the execuধon of containers, the kernel must contain certain modules and the system

must be configured in proper way to allow container engines to successfully create and run

containers. To facilitate this task to system administrator, we have implemented an script which

checks if the system is configured in a proper way (available at this repository). It is tesধng if

mandatory and recommended modules such as cgroups, user namespaces, selinux, apparmor

are available and properly configured, or some virtual networking capabiliধes are available or if

resources limits are properly set. A part from that, it also test if one of the container engine is

available and running, and finally it tries to run a ”hello world” tesধng container.

6.2. Working with distributed applicaধons

The main difference between container engines is the networking management and it could

affect the execuধon of distributed compuধng frameworks like MPI, COMPSs or Spark mulধ-node

applicaধons. In the case ofMoby (Docker),it creates a virtual IP networks per host were containers

are deployed. If you want to communicate to containers in different host, you have to create an

overlay network to bridge the networks between nodes and deploy the containers in this nodes.

It introduces an overhead for the overlay management and it is very difficult to use the MPI

network fabrics (infiniband,...). In contrast, it facilitates the configuraধon of the framework, for

instance you just need to set theMPI hosfilewith the IPs of the containers. Another opধon for this

container engine is to expose the ports used by the remote process managers and communicaধon
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services (e.g 22/ssh, 443/hħps,...) to some port in the host and use the host IPs. This will reduce

the overlay management overhead, but it will require a more complex framework configuraধon

and the access to specific network fabric is not possible because the container is sধll using a

virtual network.

In the case of Singularity, they use the host networking services by default. It has the disadvantage

that the user has to be aware of the ports used by the hosts or other containers running in the

same host. It does not allow two containers to be deployed using the same port. In contrast, it

allows the usage of specialized networking fabrics as in the case of MPI applicaধons. Network

devices, drivers and libraries of the host can be bound and used from the container. More details

about how to use MPI with Singularity containers can be found in this link.

6.3. Container releases

A part form enabling the use of containers, we have created several containers images compaধble

with the RISC-V 64bits architecture including some of the sođware stack elements. You can

find them in the MEEP Container Image repository. In this repository we can find the following

images:

• riscv64/fedora: A container image for RISC-V 64bit architecture with the a basic Fedora

installaধon. It is used as the base image for the rest of images.

• riscv64/compss: Inherited from riscv64/fedora, it contains the COMPSs and PyCOMPSs

programming model and runধme. It can be used to run the different COMPSs workflows

described in Secধon 8.4.

• riscv64/Ĥlite: Inherited from riscv64/fedora, it contains the TensorFlow Lite framework. It

can be used to run the TensorFlow models described in Secধon 8.3.1.

• riscv64/spark: Inherited from riscv64/fedora, it contains the Spark framework. It can be

used to run the Epistasis use case described in Secধon 8.3.2.
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7. Performance Analysis Methodology

In this secধon we will describe the profiling support required to be installed in the MEEP sođware

stack; as well as the POP [5] methodology, used as a driving model to carry on our performance

analysis. POP methodology provides a quanধtaধve way of measuring relaধve impact in perfor-

mance of the different factors inherent in parallelisaধon. The secধon is completed by extending

the POP methodology with vector analysis.

7.1. Profiling support

The following secধons will describe the sođware components we have included in the sođware

stack in order to acquire basic informaধon about the execuধon of benchmarks. Extrae [15]

will allow to generate Paraver [4] traces (events spread among ধmelines) that can be analyzed

post-mortem.

PAPI [37] and Libunwind [3] enables the access to hardware counters and the execuধon callstack

respecধvely. Such informaধon will be requested by Extrae and injected in the Paraver trace in

order to complete the view.

7.1.1. Extrae

Extrae [15] is the package devoted to generate Paraver [4] trace-files for a post-mortem analysis.

Extrae is a tool that uses different interposiধon mechanisms on inject probes into the target

applicaধon so as to gather informaধon regarding the applicaধon performance.

In order to facilitate the configuraধon, Extrae can be configured through an XML file. The

distributed package contains several examples.

1. Interposiধon mechanisms

Extrae takes advantage of mulধple interposiধon mechanisms to add monitors into the

applicaধon. No maħer which mechanism is being used, the target is the same, to collect

performancemetrics at known applicaধons points to finally provide the performance analyst

a correlaধon between performance and the applicaধon execuধon. Extrae currently uses

the following interposiধon mechanisms:

(a) Linker preload (LD_PRELOAD)

Most of the current operaধng systems allow injecধng a shared library into an applica-

ধon before the applicaধon gets actually loaded. If the library that is being preloaded

provides the same symbols as those contained in shared libraries of the applicaধon,

such symbols can be wrapped in order to inject code in these calls. In Linux sys-

tems this technique is commonly known by using the LD_PRELOAD environment

variable. Extrae contains subsধtuধon symbols for many parallel runধmes, as OpenMP

(either Intel, GNU or IBM runধmes), pthread, CUDA accelerate applicaধons, and MPI

applicaধons.
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This interposiধon mechanism has been the one most widely used in the context of

MEEP throughout all the performance analysis that will be reported in D5.4.

(b) DynInst

Dyninst is an instrumentaধon library that allows modifying the applicaধon by injecধng

code at specific code locaধons. Although it originally allowed modifying the appli-

caধon code when the applicaধon was run, now it supports rewriধng the binary of

the applicaধon so the code injecধon is required only once. Extrae uses Dyninst to

instrument different parallel programming runধmes as OpenMP (either for Intel, GNU

or IBM runধmes), CUDA accelerated applicaধons, and MPI applicaধons. Dyninst also

offers Extrae the possibility to easily instrument user funcধons by simply lisধng them

in a file.

In the context of MEEP, we do not use this mechanism so the distributed Extrae in

the MEEP Sođware Stack comes without DynInst support.

(c) Addiধonal instrumentaধon mechanisms

Extrae also takes the advantage of some parallel programming runধmes that have

their own instrumentaধon (or profile) mechanisms available for performance tools.

These include the widely-known Message Passing Interface (MPI) which provides

the Profile-MPI (PMPI) layer. There are some compilers that allow instrumenধng

applicaধon rouধnes by using special compilaধon flags during compilaধon and link

phases.

(d) Extrae API

Finally, Extrae gives the user the possibility to manually instrument the applicaধon

and emit its own events it the previous mechanisms do not fulfill the user’s needs. The

Extrae API is detailed in the Extrae user-guide documentaধon that accompanies the

package.

2. Sampling mechanisms

Extrae does not only offer the possibility to manually instrument the applicaধon code, but

also offers to use sampling mechanisms to gather performance data. While adding monitors

into specific locaধon of the applicaধon produces insight which can be easily correlated

with source code, the resoluধon of such data is directly related with the applicaধon control

flow. Adding sampling capabiliধes into Extrae allows providing performance informaধon of

regions of code which has not been instrumented.

Currently, Extrae sports two different sampling mechanisms. The first mechanism is the

old-known signal ধmers, which fires the sampling handler at a specific ধme interval. The

second sampling mechanism uses the processor performance counters to fire the sampling

handler at a specified interval of events interval. While the first mechanism can provide

totally uncorrelated samples with the applicaধon code, the second mechanism, using the

appropriate performance counters, can provide insight of the applicaধon but sধll presenধng

some correlaধon with the applicaধon code/performance.

The monitors added by Extrae gather different types of informaধon. Depending on the
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monitor placement, each monitor can be taught to gather specific informaধon. The most

common informaধon gathered is:

(a) Timestamp

When analyzing the behavior of an applicaধon, it is important to have a fine-grained

ধmestamping mechanism (up to nanoseconds). Extrae provides a set of clock funcধons

that are specifically implemented for different target machines in order to provide the

most accurate possible ধming. On systems that have daemons that inhibit the usage

of these ধmers or that do not have a specific ধmer implementaধon, Extrae sধll uses

advanced POSIX clocks to provide nanosecond resoluধon ধmestamps with low cost.

In the context of MEEP project we have used this last opধon by enabling it at the

configure command of the building/installaধon Extrae process (--enable-posix
-clock).

(b) Performance and other counter metrics

Extrae uses the PAPI and the PMAPI interfaces to collect informaধon regarding the

microprocessor performance. With the advent of the components in the PAPI sođware,

Extrae is not only able to collect informaধon regarding the microprocessor, but also

allows studying mulধple components of the system (disk, network, operaধng system,

among others) and also extend the study over the microprocessor (power consumpধon

and thermal informaধon). Extrae mainly collects these counter metrics at the parallel

programming calls and at samples. It also allows capturing such informaধon at the

entry and exit points of the instrumented user rouধnes.

(c) Reference to the source code

Analyzing the performance of an applicaধon requires relaধng the code that is responsi-

ble for such performance. This way the analyst can locate the performance boħlenecks

and suggest improvements on the applicaধon code. Extrae provides informaধon re-

garding the source code that was being executed (in terms of name of funcধon, file

name and line number) at specific locaধon points like programming model API calls or

sampling points.

7.1.2. libunwind

The primary goal of this library is to define a portable and efficient C programming interface

(API) to determine the call-chain of a program [3]. The API addiধonally provides the means to

manipulate the preserved (callee-saved) state of each call-frame and to resume execuধon at any

point in the call-chain (non-local goto). The API supports both local (same-process) and remote

(across-process) operaধon. As such, the API is useful in a number of applicaধons. Some examples

include:

• excepধon handling

The libunwind API makes it trivial to implement the stack-manipulaধon aspects of excepধon

handling.
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Figure 3: Sođware layers needed to access HW counters.

• debuggers

The libunwind API makes it trivial for debuggers to generate the call-chain (backtrace) of

the threads in a running program.

• introspecধon

It is ođen useful for a running thread to determine its call-chain. For example, this is

useful to display error messages (to show how the error came about) and for performance

monitoring/analysis.

• efficient setjmp()

With libunwind, it is possible to implement an extremely efficient version of setjmp().

Effecধvely, the only context that needs to be saved consists of the stack-pointer(s).

In the context of MEEP, we use Extrae (Secধon 7.1.1) to do the tracing and profiling and Extrae

relies on libunwind for its sampling feature (needed by the proposedVectorAnalysis Methodology).

So we provide libunwind in the MEEP Sođware Stack through an RPM package.

7.1.3. Enabling hardware counters

Extrae (Secধon 7.1.1) leverages PAPI to read HW performance counters. Unfortunately, PAPI

does not currently provide support for RISC-V architectures. This is mainly because PAPI relies,

in turn, on lower sođware layers that lack (or have very preliminary RISC-V support) as are the

red boxes depicted in Figure 3.
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The opধon taken to overcome this limitaধon in the MEEP project was to use a PAPI-like interface

that provides to Extrae the minimal API/funcধonality that it needs while reading the HW counters

by accessing directly the RISC-V CSR event registers, thus avoiding the use of libpfm.

To make Extrae work with this PAPI-like interface, the following opধons were needed at the

configure command of the building process: --enable-riscv64 --with-papi=<path-papi-
li
ke> --with-papi-headers=<path-regular-papi>/include.

One last thing needed to read HW counters with this mechanism was to modify the OpenSBI

to set the permissions to allow this access at startup. This is normally done on-the-fly through

the perf kernel interface but, as we we are shortcuࣕng its use, we need to hardcode the needed

allowing permissions. Lisধng 4 shows the implemented modificaধons at lines 5 and 18-19.

1 /* Disable user mode usage of all perf */
2 /*counters except default ones (CY, TM, IR) */
3 if (misa_extension('S') && sbi_hart_priv_version(scratch) \
4 >= SBI_HART_PRIV_VER_1_10)
5 csr_write(CSR_SCOUNTEREN , 7); -->csr_write(CSR_SCOUNTEREN , -1);
6

7 /**
8 * OpenSBI doesn't use any PMU counters in M-mode.
9 * Supervisor mode usage for all counters are enabled by default
10 * But counters will not run until mcountinhibit is set.
11 */
12 if (sbi_hart_priv_version(scratch) >= SBI_HART_PRIV_VER_1_10)
13 csr_write(CSR_MCOUNTEREN , -1);
14

15 /* All programmable counters will start running */
16 /*at runtime after S-mode request */
17 if (sbi_hart_priv_version(scratch) >= SBI_HART_PRIV_VER_1_11)
18 csr_write(CSR_MCOUNTINHIBIT , 0xFFFFFFF8);\
19 -->csr_write(CSR_MCOUNTINHIBIT , 0x00000000);

Lisধng 4: OpenSBI modificaধons in mstatus_init funcধon (in lib/sbi/sbi_hart.c).

It is worth menধon that this version of OpenSBI together with the PAPI-like interface are both

included in the MEEP Sođware Stack.

7.2. POPMethodology

Aħempধng to opধmise performance of a parallel code can be a daunধng task, and ođen it is

difficult to know where to start. For example, we might ask if the way computaধonal work

is divided is a problem? Or perhaps the chosen communicaধon scheme is inefficient? Or

does something else impact performance? To help address this issue, POP ([5]) has defined a

methodology for analysis of parallel codes to provide a quanধtaধve way of measuring relaধve

impact of the different factors inherent in parallelisaধon. This subsecধon introduces these metrics,

explains their meaning, and provides insight into the thinking behind them.

A feature of the methodology is that it uses a hierarchy of metrics (Figure 4), each metric reflecধng

a common cause of inefficiency in parallel programs. These metrics then allow comparison of

parallel performance (e.g. over a range of thread/process counts, across different machines,

or at different stages of opধmisaধon and tuning) to idenধfy which characterisধcs of the code
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Figure 4: POP metrics.

contribute to inefficiency.

The first step for calculaধng these metrics is to use a suitable tool (e.g. Extrae ([15])) to generate

trace data whilst the code is executed. The traces contain informaধon about the state of the

code at a parধcular ধme (e.g. it is in a communicaধon rouধne or doing useful computaধon) and

also contains values from processor hardware counters (e.g. number of instrucধons executed,

number of cycles).

The metrics are then calculated as efficiencies between 0 and 1, with higher numbers being

beħer. In general, we regard efficiencies above 0.8 as acceptable, whereas lower values indicate

performance issues that need to be explored in detail. The ulধmate goal then for the POP

methodology is recধfying these underlying issues.

The approach outlined here is applicable to various parallelism paradigms, however for simplicity

the POP metrics presented here are couched in terms of a distributed-memory message-passing

environment (e.g. MPI). For this the following values are calculated for each process from the

trace data: ধme doing useful computaধon, ধme in communicaধon, number of instrucধons &

cycles during useful computaধon. Useful computaধon excludes ধme within the overheads of

parallelism.

At the top of the hierarchy is Global Efficiency (GE), which is used to judge overall quality of

parallelisaধon. Typically, inefficiencies in parallel code have two main sources:

• Overheads imposed by the parallel nature of a code
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• Poor scaling of computaধon with increasing numbers of processes

and to reflect this we define two sub-metrics to measure these two inefficiencies. These are

Parallel Efficiency and Computaࣅon Efficiency, and our top-level GE metric is the product of these

two sub-metrics:

GE = Parallel Efficiency * Computaধon Efficiency

Parallel Efficiency (PE) reveals the inefficiency in spliষng computaধon over processes and then

communicaধng data between processes. Aswith GE, PE is a compoundmetricwhose components

reflect two important factors in achieving good parallel performance in code:

• Ensuring even distribuধon of computaধonal work across processes

• Minimising ধme communicaধng data between processes

These are measured with Load Balance Efficiency and Communicaࣅon Efficiency, and PE is defined

as the product of these two sub-metrics:

PE = Load Balance Efficiency * Communicaধon Efficiency

Load Balance (LB) is computed as the raধo between average useful computaধon ধme (across all

processes) and maximum useful computaধon ধme (also across all processes):

LB = average computaধon ধme / maximum computaধon ধme

Communicaࣅon Efficiency (CommE) is the maximum across all processes of the raধo between

useful computaধon ধme and total runধme:

CommE = maximum computaধon ধme / total runধme

CommE idenধfies when code is inefficient because it spends a large amount of ধme communicat-

ing rather than performing useful computaধons. CommE is composed of two addiধonal metrics

that reflect two causes of excessive ধme within communicaধon:

• Processes waiধng at communicaধon points for other processes to arrive (i.e. serialisaধon)

• Processes transferring large amount of data relaধve to the network capacity

These are measured using Serialisaࣅon Efficiency andTransfer Efficiency. For a detailed descripধon

of these two submetrics, please refer to [5].

The final metric in the hierarchy is Computaࣅon Efficiency (CompE), which are raধos of total ধme

in useful computaধon summed over all processes. For strong scaling (i.e. problem size is constant)

it is the raধo of total ধme in useful computaধon for a reference case (e.g. on 1 processor or 1

compute node) to the total ধme as the number of processes (or nodes) is increased. For CompE

to have a value of 1 this ধme must remain constant regardless of the number of processes.

Insight into possible causes of poor computaধon scaling can be invesধgated using metrics devised

from processor hardware counter data. Two causes of poor computaধonal scaling are:

• Dividing work over addiধonal processes increases the total computaধon required
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• Using addiধonal processes leads to contenধon for shared resources

these can be invesধgated using Instrucࣅon Scaling and Instrucࣅons Per Cycle (IPC) Scaling.

Instrucࣅon Scaling is the raধo of total number of useful instrucধons for a reference case (e.g.

1 processor) compared to values when increasing the numbers of processes. A decrease in

Instrucধon Scaling corresponds to an increase in the total number of instrucধons required to

solve a computaধonal problem.

IPC Scaling compares IPC to the reference, where lower values indicate that rate of computaধon

has slowed. Typical causes for this include decreasing cache hit rate and exhausধon of memory

bandwidth, these can leave processes stalled and waiধng for data.

7.3. Vector methodology

The main goal of this task is to create a vector analysis methodology that will allow to compare

applicaধon performance with respect to the vector arithmeধc behavior. The vector analysis

methodology is based on two main ideas. First, vector coverage, represenধng the porধon of

code that has been actually vectorized. Second, vector efficiency, represenধng the actual length

of vector instrucধons with respect to the maximum allowed by the architecture. We defined

different metrics that may capture both coverage and efficiency of the vectorial behavior of

applicaধons.

Dealing with vector coverage, we propose the following metrics:

• Arithmeধc Computaধonal Density (ACD), measures the number of arithmeধc instrucধons

with respect to the total number of instrucধons.

• Arithmeধc Vector Density (AVD), measures the number of vector arithmeধc instrucধons

with respect to the total number of arithmeধc instrucধons.

Dealing with vector efficiency, we propose the following metric:

• Average Vector Length (AVL), measures the average vector length for all vector arithmeধc

instrucধons.

In addiধon to these metrics, we also recommend to subsধtute the Instrucধons Per Cycle (IPC)

measurement forOperaধons Per Cycle (OPC); due in applicaধons sensiধve to use vector instruc-

ধons the IPC is not as important as OPC, so the latest will be the target to maximize.

One of the main goals of these metrics is to be generic and they can be potenধally applied in any

HW architecture. In order to calculate them, the following set of HW counters is required:

• Set of counters to measure actual number of operaধons:

– BYTE_OPS: To count the number of arithmeধc byte type operaধons.

– HALF_OPS: To count the number of arithmeধc half-word type operaধons.

– WORD_OPS: To count the number of arithmeধc word operaধons.
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• Set of counters to measure actual number of instrucধons:

– S_BYTE_INS: To count the number of arithmeধc scalar byte type instrucধons.

– S_HALF_INS: To count the number of arithmeধc scalar half-word type instrucধons.

– S_WORD_INS: To count the number of arithmeধc scalar word type instrucধons.

– V_BYTE_INS: To count the number of arithmeধc vector byte type instrucধons.

– V_HALF_INS: To count the number of arithmeধc vector half-word type instrucধons.

– V_WORD_INS: To count the number of arithmeধc vector word type instrucধons.

Provided that previous counters are available together with other well-known counters such as

INS (number of instrucধons) and CYC (number of cycles), the proposed vector analysis metrics

can be computed as follows:

Computaধonal Density:

CD = S_BY TE_INS+S_HALF_INS+S_WORD_INS+V _BY TE_INS+V _HALF_INS+V _WORD_INS
INS

Arithmeধc Vector Density:

AVD = V _BY TE_INS+V _HALF_INS+V _WORD_INS
S_BY TE_INS+S_HALF_INS+S_WORD_INS+V _BY TE_INS+V _HALF_INS+V _WORD_INS

We can easily compute a new derived metric called Vector Computaধonal Density (VCP) as the

product of Computaࣅonal Density and Arithmeࣅc Vector Density (VCD=AVD*CD).

The Average Vector Length (AVL) can be computed per data type:

• AVL_b = BY TE_OPS
V _BY TE_INS+S_BY TE_INS

• AVL_h = HALF_OPS
V _HALF_INS+S_HALF_INS

• AVL_w = WORD_OPS
V _WORD_INS+S_WORD_INS

Or we can compute an aggregated value for all the types as:

AV L = BY TE_OPS+HALF_OPS+WORD_OPS
S_BY TE_INS+S_HALF_INS+S_WORD_INS+V _BY TE_INS+V _HALF_INS+V _WORD_INS

The Operaধons Per Cycle (OPC) metric can be computed as:

OPC = BY TE_OPS+HALF_OPS+WORD_OPS
CY C

If we want to consider also memory instrucধons, an extended set of HW counters is needed by

adding the following ones:

• L_BYTE_ST1: To count the number of load instrucধons (byte type, stride 1)

• L_BYTE_STN: To count the number of load instrucধons (byte type, stride n)

• L_BYTE_IND: To count the number of load instrucধons (byte type, indexed)
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• L_HALF_ST1: To count the number of load instrucধons (half-word type, stride 1)

• L_HALF_STN: To count the number of load instrucধons (half-word type, stride n)

• L_HALF_IND: To count the number of load instrucধons (half-word type, indexed)

• L_WORD_ST1: To count the number of load instrucধons (word type, stride 1)

• L_WORD_STN: To count the number of load instrucধons (word type, stride n)

• L_WORD_IND: To count the number of load instrucধons (word type, indexed)

And the equivalent store versions: S_BYTE_ST1, S_BYTE_STN, S_BYTE_IND, S_HALF_ST1, S_-

HALF_STN, S_HALF_IND, S_WORD_ST1, S_WORD_STN, S_WORD_IND.

Our final goal is to use this set of metrics in the MEEP environments (RISC-V and ACME) but in

the meanধme we have started working in x86 architectures due to: 1) some extra complexiধes

arising from using PAPI in RISC-V architectures; and 2) the acধvity is a collaboraধon with the

POP2 Centre of Excellence, that usually apply performance analysis methodologies to commodity

clusters.

We defined the metrics we described previously, together with others that help us in the analysis,

in terms of the x86 PAPI counters available on MN4 for double precision instrucধons/operaধons:

• AVL= PAPI_DP_OPS
PAPI_V EC_DP

• OPC= PAPI_DP_OPS
PAPI_TOT_CY C

• IPC= PAPI_TOT_INS
PAPI_TOT_CY C

• ACD= PAPI_V EC_DP
PAPI_TOT_INS

• AVD=

=FP_ARITH:128B_PACKED_DOUBLE+FP_ARITH:256B_PACKED_DOUBLE+FP_ARITH:512B_PACKED_DOUBLE
PAPI_V EC_DP

When compiling we found the different compiler flags needed to enable/disable vectorizaধons

and seষng the vector length used by the hardware on an x86 architecture. In this regard, four

different set-ups have been tested for the different applicaধons/benchmarks:

• AVX-512: flags to enable AVX-512 vectorizaধon are used.

• AVX-2: flags to enable AVX-2 vectorizaধon are used.

• NO FLAG: no specific flag related to vectorizaধon is passed to the compiler.

• NO VEC: vectorizaধon is explicitly disabled.

7.3.1. Validaধon with sample codes

The following codes have been analysed following the methodology:
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• vAdd (implemented syntheধc kernel, see Lisধng 5, similar to the Add kernel part of the

Stream benchmark, see Secধon 8.1.1).

• DAXPY (implemented syntheধc kernel, see Lisধng 6, same as the Axpy kernel part of the

RISC-V benchmarks presented in Secধon 8.2.1).

• FFTXlib (see Secধon 8.2.4 for a detailed descripধon).

• HPCG (see Secধon 8.2.3 for a detailed descripধon).

• CloudMicrophysics (see Secধon 8.2.5 for a detailed descripধon).

Two different modes of analysis have been envisioned: when the code is just one kernel (like

vAdd or DAXPY) we just capture the values of the HW counters for the whole execuধon and

calculate the corresponding metrics.

Otherwise, it is, when we are dealing with more complex codes including mulধple funcধons, we

use sampling. Extrae offers to use sampling mechanisms to gather performance data [15]. This

technique allows us to perform a differenধated study per funcࣅon, as one would expect different

vectorial behavior on each one.

We found out, however, that in most cases the sampling rate provided by Extrae was not enough

to capture with accuracy the real behavior. In these cases, we included two more techniques,

namely, clustering [14] and folding [16].

Cluster analysis is applied to detect different trends in the applicaধon computaধon regions with

minimum user intervenধon. This detecধon provides an unique insight of the applicaধon behavior

that serves as a starধng point to perform different types of analyses around the applicaধons’

computaধon structure.

The folding provides very detailed performance informaধon of these code regions on iteraধve and

regular applicaধons. The folding combines the instrumentaধon with the sampling informaধon to

unveil the performance evoluধon and to augment the details offered by simply using instrumenta-

ধon or sampling. The folding consists in collapsing all samples obtained in the different idenধfied

clusters in the clustering phase into one syntheধc representaধve instance of each cluster.

So, depending on the kind of code under study, the methodology is established as follows:

• Simple kernels: Extrae tracing + Paraver analysis.

• Benchmarks: Extrae tracing with Sampling to map HW counters readings with code func-

ধons + Clustering + Folding to increase the number of samples per cluster + Paraver analysis.

The defined metrics have been gathered, first, for the two proposed syntheধc kernels. The source

code for both syntheধc kernels can be seen in Lisধng 5 (vAdd) and Lisধng 6 (DAXPY) respecধvely.

#define LENGTH 80000000
void main(void) {

double y[LENGTH], x[LENGTH];
for(int i = 0; i < LENGTH; i++)

y[i] = x[i] + y[i];
}

Lisধng 5: vAdd source code.
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Version AVL OPC IPC ACD AVD

AVX-512 8.00 0.20 0.18 0.14 1.00

AVX-2 4.00 0.19 0.32 0.15 1.00

NO FLAG 2.00 0.16 0.52 0.16 1.00

NO VEC 1.00 0.12 0.72 0.16 0.00

Table 2: vAdd results.

Version AVL OPC IPC ACD AVD

AVX-512 8.00 0.41 0.18 0.28 1.00

AVX-2 4.00 0.40 0.34 0.30 1.00

NO FLAG 2.00 0.25 0.46 0.27 1.00

NO VEC 1.00 0.16 0.57 0.28 0.00

Table 3: DAXPY results.

#define LENGTH 80000000
void main(void) {

double y[LENGTH], x[LENGTH];
double a = 3.0;
for(int i = 0; i < LENGTH; i++)

y[i] = a*x[i] + y[i];
}

Lisধng 6: DAXPY source code.

These metrics were obtained on BSC’s MareNostrum4, using Intel compiler version 17.0.4, and

for each version we highlight the following compilaধon flags:

• AVX-512: -qopenmp -O3 -xCOMMON-AVX512

• AVX-2: -qopenmp -O3 -xCORE-AVX2

• NO FLAG: -qopenmp -O3

• NO VEC: -qopenmp -O3 -no-vec

Results for vAdd syntheধc kernel are presented in Table 2.

Regarding AVL, the observed behavior perfectly matches the theoreধcally expected. It looks

that AVX-512 instrucধons are really costly (this can be inferred by comparing with AVX-2, where

OPC is almost the same while keeping a relaধvely higher IPC). Results in the IPC column are also

reasonable as vector instrucধons are costly. Both AVL and AVD columns allow for a sanity check

to confirm that the used compilaধon flags are working as expected.

Next, Table 3 presents the gathered metrics for DAXPY syntheধc kernel.

Basically the same conclusions as for vAdd apply. In this case the values in OPC and ACD columns

double the ones shown for vAdd: this is also quite expected as in this case we are performing

two floaধng-point operaধons in each iteraধon of the loop (instead of just one).
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Version AVL OPC IPC ACD AVD

AVX-512 1.08 1.28 2.27 0.52 0.01

AVX-2 1.07 1.26 2.31 0.51 0.02

NO FLAG 1.05 1.10 2.67 0.39 0.04

NO VEC 1.05 1.10 2.68 0.39 0.04

Table 4: FFTXlib results.

Version AVL OPC IPC ACD AVD

AVX-512 4.99 0.93 1.02 0.18 0.61

AVX-2 1.73 0.67 1.47 0.26 0.26

NO FLAG 1.73 0.69 1.65 0.24 0.73

NO VEC 1.00 0.64 1.75 0.36 0.00

Table 5: HPCG results.

To highlight the use of this vector analysis methodology, Table 4, Table 5, and Table 6 report the

average results obtained for the FFTXlib, HPCG, and the CloudMicrophysics kernel benchmarks

respecধvely.

Overall, it can be seen that FFTXlib does not benefit from vectorizaধon. Only a small increase

in both AVL and OPC can be observed when enabling longer vector lengths by compilaধon

flags (avx512 and avx2). This may be explained by the fact that this benchmark relies on scalar

instrucধons to perform all the required computaধons. This fact is also highlighted by the AVD

metric, which is the raধo between arithmeধcvector instrucধons and overall arithmeধc instrucধons

(as we can see, this value is almost zero). This behavior, however, is not uniform across all sampled

funcধons as it can be seen in Table 7.

The HPCG benhmark presents beħer numbers when compared to FFTXlib in terms of vector-

izaধon. It can be seen that, for instance, AVL metric is more than half of the theoreধcal value

for the AVX-512 version. This is also underlined by the AVD value, which tell us that more than

half of the arithmeধc instrucধons executed are vector instrucধons. Table 8 presents the detailed

results spliħed by funcধons for this benchmark.

Detailed (per funcধon) results for the CloudMicrophysics kernel are not provided as only one

funcধon is sampled (cloudsc_c) so the results are exactly the same than the average already

presented in Table 6.

Version AVL OPC IPC ACD AVD

AVX-512 1.31 0.47 1.73 0.21 0.04

AVX-2 1.27 0.49 1.83 0.21 0.09

NO FLAG 1.17 0.47 1.95 0.20 0.17

NO VEC 1.00 0.44 2.04 0.22 0.00

Table 6: cloudsc results.
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Funcধon Coverage AVL OPC IPC ACD AVD

Ēw_no_twiddle_32 11.48% 1.16 1.03 2.10 0.43 0.02

Ēwi_twiddle_9 10.39% 1.01 1.81 2.98 0.60 0.00

Ēw_twiddle_9 10.30% 1.01 1.79 2.97 0.60 0.00

Ēwi_no_twiddle_32 9.01% 1.00 1.04 2.37 0.44 0.00

Ēwi_no_twiddle_9 7.79% 1.01 1.81 2.98 0.60 0.00

Ēw_no_twiddle_9 7.48% 1.00 1.80 2.99 0.60 0.00

prepare_psi 7.07% 2.00 0.28 0.63 0.22 1.00

test(MAIN_) 4.93% 3.95 1.46 0.88 0.42 0.42

Ē_y_sধck_ 0.04% 0.99 2.46 2.46 0.41 0.00

Table 7: FFTXlib results for AVX-512 case detailed by funcধon. The coverage column represents

the percentage of the total execuধon ধme spent in each funcধon.

Funcধon Coverage AVL OPC IPC ACD AVD

ComputeSYMGS_ref 71.45% 4.72 0.89 0.98 0.19 0.56

ComputeSPMV_ref 27.41% 5.95 1.05 1.12 0.16 0.75

Table 8: HPCG results for AVX-512 case detailed by funcধon. The coverage column represents

the percentage of the total execuধon ধme spent in each funcধon.
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8. Benchmarks descripধon

This secধon describes the set of benchmarks used to explore the performance of MEEP envi-

ronments. This set of benchmarks is divided into four categories: System, HPC, Data Analyধcs

and Workflows. The performance analysis of all these benchmarks will be reported in deliverable

D5.4 - Final Release of the Sođware Stack.

8.1. System benchmarks

This secধon describes the benchmarks used to explore the intrinsic performance of a system

in terms of memory system bandwidth (Stream) and overheads of common HPC programming

models such as OpenMP and MPI (EPCC OpenMP and EPCC OpenMP/MPI).

To test the benchmarks on all MEEP environments which have specific features, we have created

configuraধon files per environment and a set of make and run scripts to deal with all of this

diversity and to have an automaধc methodology to build and run them. Therefore, from an user

perspecধve the steps needed to test any of the benchmarks on a specific plaĤorm are:

1. Compile the benchmark for the desired plaĤorm:

./make-meep-bench.sh <platform-name>

2. Configure the SLURM parameters for the desired run:

./configure -slurm <slurm-config>

3. Execute the benchmark for the desired plaĤorm:

./run-meep-bench.sh <platform-name>

In the end, the user will have all the results under the output folder, that will also include all the

compilaধon informaধon.

8.1.1. Stream

Descripধon

The STREAM benchmark is a syntheধc benchmark built with the intent of measuring the memory

bandwidth of accessing the main memory of a system (in MB/s), by execuধng simple vector

kernels (copy, scale, add and triad) [28]:

• Copy: c[i] = a[i]

• Scale: b[i] = s * c[i]

• Add: c[i] = a[i] + b[i]

• Triad: a[i] = b[i] + s * c[i]
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Objecধves

As stated in the descripধon, Stream is used to measure the performance of accessing the main

memory system of a compuধng plaĤorm. In this project, we use Stream to evaluate the per-

formance of the enধre memory system (from cache to main memory). Furthermore, Stream is

also used as a co-design tool in the development process of the various iteraধons of the ACME

compuধng plaĤorms, with special focus on the memory architecture. Specifically, this benchmark

is used to test memory architecture features that are being deployed. By analyzing the resultant

performance, conclusions are drawn and feedback is provided to the hardware developers to aid

in the development of these compuধng plaĤorms.

Given that we are tesধng the memory bandwidth of various MEEP environments, reading memory

bandwidth inMB/s does not provide a clear picturewhen comparing them. Therefore, wemodified

Stream to report memory bandwidth in Bytes per Cycle (bytes/cycle):

bytes/cycle = M
T ∗

1
F ,

M is the total amount of memory involved in the test (in bytes), T is the execuধon ধme of the

test (in seconds) and F is the clock frequency of the processor (in Hz).

Modificaধons

In the context of the MEEP project, we extended the capabiliধes of the Stream benchmark to

not only give us the bandwidth of accessing main memory but also to inspect the bandwidth of

the different cache levels of a system. Measuring the performance of the different cache levels

may present some challenges regarding the default ধming model of Stream. Originally, Stream

iterates over NTIMES each specific kernel (copy, scale, add and triad):

for (i=0;i<NTIMES;i++){
time(start);
kernel();
time(end);

}

Which means that, depending on the size and complexity of the test and the granularity of the

ধming model, we may get an invalid elapsed ধme. To circumvent this issue we moved the ধming

operaধons outside of the for loop, and increased substanধally the NTIMES variable to make sure

that in the limit we get closer to a valid elapsed ধme and also to eliminate the loop overhead.

time(start);
for (i=0;i<NTIMES;i++){

test();
}
time(end);

Addiধonally, we also modified the ধme funcধon from mysecond() that uses geࣕmeofday() to

clock_geࣕme(). This allow us to have nanosecond resoluধon which may be required to ধme the

tests that have small array sizes.

How are we able to measure the different cache levels bandwidth?

Even though we may not be able to accurately map each test to the desired cache level, one can

aħempt to do so by varying the array sizes of each test. To exemplify this idea, let’s assume we
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have a computer system with only one cache level with a size of Sc, a main memory of size Sm

and let’s us also define the test as a simple array copy, such that

for(int i=0;i<N;i++){
y[i]=x[i]

}

In this scenario, we will be working over two arrays of sizes Sx and Sy and to make sure that we

may be working on the cache we have to make:

Sx + Sy < Sc.

At the same ধme, to make sure we are accessing main memory we have to ascertain that:

Sc < Sx + Sy < Sm.

Sođware release

We provide the source code and workload configuraধons used to test each MEEP environment.

This is available at MEEP Benchmarks webpage (Stream table entry).

8.1.2. EPCC-OpenMP

Descripধon

The EPCC OpenMP benchmark measures the computaধonal overhead in micro-seconds of

mulধple OpenMP direcধves [18, 20, 27].

Objecধves

From the complete set of OpenMP direcধves that this benchmark provides, we selected the

following subset:

• Synchronisaধon direcধves

• Loop scheduling clauses

• Tasking constructs

Starধng with the selected synchronizaধon direcধves, it is highlighted the important characteris-

ধcs and implicaধons of each them:

• Parallel construct (Lisধng 7): Defines a parallel region with a specific number of threads.

All threads execute the code within this parallel region and at the end there is an implicit

barrier (synchronisaধon point for all threads).

for (j = 0; j < innerreps; j++) {
#pragma omp parallel
{

delay(delaylength);
}

}

Lisধng 7: Benchmark source code that uses the parallel construct: All threads will execute the
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delay funcধon.

• For loop construct (Lisধng 8): Used to parallelise the execuধon of all iteraধons in a for loop.

#pragma omp parallel private(j){
for (j = 0; j < innerreps; j++) {

#pragma omp for
for (i = 0; i < nthreads; i++) {

delay(delaylength);
}

}
}

Lisধng 8: Benchmark source code that uses the parallel construct followed by a omp for direcধve.

• Single construct (Lisধng 9): Define a region of code within a parallel region that is executed

by only one thread. The internal mechanism of control is by using a flag to define if a thread

should execute this region (when the flag is set other threads ignore this code region). There

is an implicit barrier at the end of this region.

#pragma omp parallel private(j)
{

for (j = 0; j < innerreps; j++) {
#pragma omp single
delay(delaylength);

}
}

Lisধng 9: Benchmark source code that uses the single construct: Only one thread will execute

the delay funcধon.

• Criࣅcal construct (Lisধng 10): Defines a secধon of code that can only be executed by one

thread at a ধme.

#pragma omp parallel private(j)
{

for (j = 0; j < innerreps / nthreads; j++) {
#pragma omp critical
{

delay(delaylength);
}

}
}

Lisধng 10: Benchmark source code that uses the criধcal construct: One thread at a ধme will

execute the delay funcধon.

• Atomic construct (Lisধng 11): Defines that a single statement that modifies the value of a

variable, in a parallel region, can only be executed by one thread at a ধme.

#pragma omp parallel private(j) firstprivate(b)
{

for (j = 0; j < innerreps / nthreads; j++) {
#pragma omp atomic
aaaa += b;
b *= c;

}
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}

Lisধng 11: Benchmark source code that uses the criধcal construct: One thread at a ধme will

execute the aaaa +=b instrucধon.

• Lock/unlock runࣅme rouࣅne (Lisধngs 12):

omp_lock_t lock;
#pragma omp parallel private(j)
{

for (j = 0; j < innerreps / nthreads; j++) {
omp_set_lock(&lock);
delay(delaylength);
omp_unset_lock(&lock);

}
}

Lisধng 12: Benchmark source code that uses the lock/unlock rouধnes: All threads will execute

the delay funcধon one at a ধme.

Following with the loop scheduling clauses:

• Staࣅc (Lisধngs 13): As the name states, this schedule mechanism assigns a fixed number

of iteraধon chunks to each thread (usually in a round-robin fashion). Importantly, the

major difference between staࣅc and guided is the fact that the assignment of iteraধons

to threads is done before computaধons in the loop start, rendering this clause overhead

smaller compared with staࣅc and guided.

#pragma omp parallel private(j)
{

for (j = 0; j < innerreps; j++) {
#pragma omp for schedule(static,cksz)
for (i = 0; i < itersperthr * nthreads; i++) {

delay(delaylength);
}

}
}

Lisধng 13: Benchmark source code that uses the staধc schedule clause.

• Dynamic (Lisধngs 14): In this schedule mechanism, each thread executes a chunk of it-

eraধons from the loop and then requests another, unধl no more iteraধons are leđ to be

executed.

#pragma omp parallel private(j)
{

for (j = 0; j < innerreps; j++) {
#pragma omp for schedule(dynamic,cksz)
for (i = 0; i < itersperthr * nthreads; i++) {

delay(delaylength);
}

}
}

Lisধng 14: Benchmark source code that uses the dynamic schedule clause.

• Guided (Lisধngs 15): Similar to dynamic, in the sense that each thread executes a chunk

and then requests another. However, the chunk size is computed differently, so that the

chunk size is progressively reduced as we reach the end of the iteraধon space.
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#pragma omp parallel private(j)
{

for (j = 0; j < innerreps; j++) {
#pragma omp for schedule(guided,cksz)
for (i = 0; i < itersperthr * nthreads; i++) {

delay(delaylength);
}

}
}

Lisধng 15: Benchmark source code that uses the guided schedule clause.

Ending with the tasking constructs:

• Parallel task generaࣅon (Lisধngs 16): Each thread in the team will iterate through its own

for loop and create a task that will execute the delay funcধon.

#pragma omp parallel private( j )
{

for ( j = 0; j < innerreps; j ++ ) {
#pragma omp task {

delay( delaylength );
}

}
}

Lisধng 16: Benchmark source code that creates tasks by all threads. Each task is created to

execute the delay funcধon.

• Serial task generaࣅon (Lisধngs 17): In this example only one thread iterates though a loop,

creaধng one task per iteraধon. Remaining threads wait at an implicit barrier.

#pragma omp parallel private(j)
{

#pragma omp master
{

for (j = 0; j < innerreps * nthreads; j++) {
#pragma omp task
{

delay(delaylength);
}

}
}

}

Lisধng 17: Benchmark source code that creates tasks by one thread. Each task will execute the

delay funcধon.

• Task tree generaࣅon (Lisধngs 18): Generaধon of tasks in parallel via recursive binary tree

funcধon.

#pragma omp parallel private(j)
{

for (j = 0; j < (innerreps >> DEPTH); j++) {
#pragma omp task
{

branchTaskTree(DEPTH);
delay(delaylength);

}
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}
}

void branchTaskTree(int tree_level) {
if ( tree_level > 0 ) {

#pragma omp task
{

branchTaskTree(tree_level - 1);
branchTaskTree(tree_level - 1);
delay(delaylength);

}
}

}

Lisধng 18: Benchmark source code that creates tasks by one thread. Each task will execute the

delay funcধon.

Regarding the ধming model, and simply put, is defined as follows:

1. Get the reference ধme of the code region: tref

2. Get the ধme of the code region using the OpenMP direcধve: tomp

3. Compute OpenMP overhead: toverhead = tomp − tref

The EPCC-OpenMP benchmark is used to measure the overhead of the selected set of OpenMP

direcধves in clock cycles.

Sođware release

We provide the source code and workload configuraধons used to test each MEEP environment.

This is available at MEEP Benchmarks webpage (EPCC-OpenMP table entry).

8.1.3. EPCC-OpenMP/MPI

Descripধon

The EPCC-OpenMP/MPI benchmark measures the overhead for mixed-mode OpenMP/MPI

programming [19]. Specifically, this benchmark provides a set of micro benchmarks for both point-

to-point (for example, ping-pong, halo exchange among others) and collecধve communicaধons

(for example, gather, scaħer among others).

Objecধves

In MEEP we will focus on the following collecধve communicaধons:

• MPI Gather & Scaħer: The MPI scaħer mechanism can be viewed as the process of sending

data from the root process to all processes in a set. MPI gather is quite the opposite, i.e., all

processes in a set send data to one single process.

• MPI AlltoAll & AllReduce: Involves the computaধon of data from all processes and instead

of centralize the result in one process the results will be accessed to all processes.
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• MPI Barrier: This is a synchronizaধon mechanism, which means that all processes must

wait in a specific point unধl every process in the set reaches that point.

And for point-to-point communicaধons, we report the following:

• Master-only, point-to-point communicaࣅons: MPI communicaধon takes place in the master

thread, outside of parallel regions.

• Master-only, halo exchange: All MPI processes parধcipate and the processes are arranged

in a ring, where each process exchanges messages with its two neighbouring processes.

The metric used to measure the overhead of MPI communicaধons is clock cycles.

Sođware release

We provide the source code and workload configuraধons used to test each MEEP environment.

This is available at MEEP Benchmarks webpage (EPCC-OpenMP/MPI table entry).

8.2. HPC benchmarks

This secধon lists and describes the set of HPC benchmarks selected to analyze the performance

of all available MEEP environments:

• RISC-V Benchmarks

• HPL - High-Performance Linpack

• HPCG - High Performance Conjugate Gradients

• FFTXlib

• CloudMicrophysics

• Advecধon-MPDATA

Similar to what was described in the System benchmarks secধon, to test these benchmarks on

all MEEP environments which have specific features, we have created configuraধon files per

environment and a set of make and run scripts to deal with all of this diversity and to have an

automaধc methodology to build and run them. Therefore, from an user perspecধve the steps

needed to test any of the benchmarks on a specific plaĤorm are:

1. Compile the benchmark for the desired plaĤorm:

./make-meep-bench.sh <platform-name>

2. Configure the SLURM parameters for the desired run:

./configure -slurm <slurm-config>

3. Execute the benchmark for the desired plaĤorm:

./run-meep-bench.sh <platform-name>
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In the end, the user will have all the results under the output folder, that will also include all the

compilaধon informaধon.

8.2.1. RISC-V Benchmarks

Descripধon

The RISCV-V Benchmarks [17] provide a large set of kernels that can be used to test simple

(also more complex) tradiধonal HPC workloads. Moreover, this benchmark is targeted to run

on RISC-V plaĤorms, although it can also be run in other plaĤorms, provided some addiধonal

configuraধon.

Objecধves

In the context of the MEEP project, we are focused on the following set of kernels:

• Axpy - Performs a mulধply and add operaধon of arrays. y ← αx+y. A basic implementaধon
of this mulধply-add operaধon can be:

for (i=0; i<n; i++) {
dy[i] += a*dx[i];

}

• Gemm - General matrix mulধplicaধon. C ← αAB + βC . A basic implementaধon of the

matrix mulধplicaধon can be:

for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {

for (int k = 0; k < K; k++) {
c[i][j] += a[i][k] * b[k][j];

}
}

}

This kernel generally represents a compute bound problem.

• SpMv - Sparse matrix-vector mulধplicaধon operaধon. y ← Ax:

for (row=0; row<nrows; row++) {
elem_t sum = 0.0;
for (idx=ia[row]; idx<ia[row+1]; idx++) {

sum += a[idx] * x[ja[idx]];
}
y[row] = sum;

}

• Somier - Is a kernel inspired in the old bed base model composed of a mesh of springs. For

each point of the mesh this kernel computes the posiধon, acceleraধon and velocity of this

3D structure. Exemplificaধon of the nature of the computaধons:

for(i = 0; i<n; i++) {
for(j = 0; j<n; j++) {

for(k = 0; k<n; k++) {
V[0][i][j][k] += A[0][i][j][k]*dt;
V[1][i][j][k] += A[1][i][j][k]*dt;
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V[2][i][j][k] += A[2][i][j][k]*dt;
}

}
}

• FFT - This kernel uses the FFTW, a C subrouধne library for compuধng the discrete Fourier

transform (DFT) [22]. This is the most complex kernel as it integrates the FFTW library to

compute the Fourier Transform.

The set of selected kernels serve the purpose of analysing the behaviour of simple memory-

and compute-bound kernels running on all the available MEEP environments. Specifically, we

are focusing on mulধ-thread and vector instrucধon performance. To this end we are primarily

targeধng the OPC metric in the context of the vector performance methodology.

Contribuধons

The RISC-V Benchmarks were developed in the context of the EPI project. The MEEP project

also contributed to the development of this repository of kernels, specifically:

• Establish a standard and common infrastructure to develop, build and run a kernel;

• Provide support for BLAS libraries for a small subset of kernels: Axpy and GEMM;

• Provide a new version for a subset of kernels that uses vector instrucধons based on the

OpenMP simd construct: Axpy, Gemm, Somier, SpMv;

• Addiধonally, we also put forward a ”Baremetal” versions of a subset of kernels.

Sođware release

The source code and workload configuraধons used to test each MEEP environment are available

at MEEP Benchmarks webpage (RISC-V Benchmarks table entry).

8.2.2. HPL

Descripধon

HPL (High-Performance Linpack) is a portable implementaধon of the High-Performance Lin-

pack benchmark and it solves a linear system of order N : Ax = b by first compuধng the LU
factorizaধon [8]. It is wriħen in C and requires an MPI and BLAS implementaধon.

Objecধves

This benchmark is uধlized to analyse the behaviour of more complex applicaধon paħerns in

the available MEEP environments. Specifically, we are focusing on mulধ-thread (supported by

OpenMP) and alsomulধ-node execuধon (supported onMPI) for two different types of compilaধon

setups:

• scalar: where vectorizaধon is disabled and therefore only scalar instrucধons are executed.

• vector: where auto-vectorizaধon is enabled and therefore scalar and also vector instrucধons
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are executed.

Regarding the performance analysis, we will evaluate the behavior of this benchmark using the

OPC metric in the context of the vector analysis methodology.

Sođware release

The source code and workload configuraধons used to test each MEEP environment are available

at MEEP Benchmarks webpage (HPL table entry).

8.2.3. HPCG

Descripধon

HPCG [26] is a sođware package that performs a fixed number ofmulধgrid precondiধoned (using a

symmetric Gauss-Seidel smoother) conjugate gradient (PCG) iteraধons using double precision (64

bit) floaধng point values. HPCG is intended as a complement to the High Performance LINPACK

(HPL) benchmark (Secধon 8.2.2), currently used to rank the TOP500 compuধng systems. The

computaধonal and data access paħerns of HPL are sধll representaধve of some important scalable

applicaধons, but not all. HPCG is designed to exercise computaধonal and data access paħerns

that more closely match a different and broad set of important applicaধons, and to give incenধve

to computer system designers to invest in capabiliধes that will have impact on the collecধve

performance of these applicaধons.

HPCG is a complete, stand-alone code that measures the performance of basic operaধons in a

unified code:

• Sparse matrix-vector mulধplicaধon.

• Vector updates.

• Global dot products.

• Local symmetric Gauss-Seidel smoother.

• Sparse triangular solve (as part of the Gauss-Seidel smoother).

• Driven by mulধgrid precondiধoned conjugate gradient algorithm that exercises the key

kernels on a nested set of coarse grids.

• Reference implementaধon is wriħen in C++ with MPI and OpenMP support.

Objecধves

In the context of MEEP, we will evaluate the performance of the reference HPCG implementaধon

in terms of OPC for the different kernels of the code (as provided by the output of the sođware

itself), in different plaĤorms. Wewill consider both OpenMP (for single-node execuধons) and MPI

(for mulধ-node execuধons) versions of the code and will evaluate its scalability for two different

compilaধon setups:

• scalar: where vectorizaধon is disabled.
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• vector: where auto-vectorizaধon is enabled.

Sođware release

The source code and workload configuraধons used to test each MEEP environment are available

at MEEP Benchmarks webpage (HPCG table entry).

8.2.4. FFTXlib

Descripধon

FFTXlib is mainly a rewrite and opধmizaধon of earlier versions of FFT related rouধnes inside

Quantum ESPRESSO (QE) pre-v6; and finally their replacement. Despite many similariধes, current

version of FFTXlib dramaধcally changes the FFT strategy in the parallel execuধon, from 1D+2D

FFT performed in QE pre v6 to a 1D+1D+1D one; to allow for greater flexibility in parallelizaধon.

FFTXlib module is a collecধon of driver rouধnes that allows the user to perform complex 3D

Fast Fourier Transform (FFT) in the context of plane wave based electronic structure sođware. It

contains rouধnes to iniধalize the array structures, to calculate the desired grid shapes. It imposes

underlying size assumpধons and provides correspondence maps for indices between the two

transform domains.

Once this data structure is constructed, forward or inverse in-place FFT can be performed. For

this purpose FFTXlib can either use a local copy of an earlier version of FFTW (a commonly used

open source FFT library), or it can also serve as a wrapper to external FFT libraries via condiধonal

compilaধon using pre-processor direcধves. It supports both MPI and OpenMP parallelisaধon

technologies.

FFTXlib is currently employed within Quantum Espresso package [6], a widely used suite of codes

for electronic structure calculaধons and materials modeling in the nanoscale, based on planewave

and pseudopotenধals.

Objecধves

In the context of MEEP, wewill evaluate the performance of this benchmark in terms of execuধon

ধme for the different kernels of the code (as provided by the output of the sođware itself), in

different plaĤorms. We will consider the OpenMP version of the code and will evaluate its

scalability (when possible) for two different compilaধon setups:

• scalar: where vectorizaধon is disabled.

• vector: where auto-vectorizaধon is enabled.

Sođware release

The source code and workload configuraধons used to test each MEEP environment are available

at MEEP Benchmarks webpage (FFTXlib table entry).
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8.2.5. CloudMicrophysics

Descripধon

CloudMicrophysics refers to an applicaধon developed in the context of the ECMWF Escape

project called Cloud microphysics scheme (for more informaধon we refer the reader to document

D1.1 Batch 1: Definiধon of several Weather & Climate Dwarfs [23]). Simply put, CloudMicro-

physics computes the cloud and precipitaধon processes that are present in the the IFS model.

Objecধves

The original source code provides a set of versions, however in MEEPwe focus on the Standalone

C version to test the performance of the available plaĤorms. Furthermore, this applicaধon is also

used as a co-design tool to test the autovectorizaধon capabiliধes of the compiler used in MEEP

(LLVM-EPI).

In terms of performance analysis, CloudMicrophysics is used to explore the vector performance of

a more mature applicaধon on MEEP environments that contain hardware supporধng this feature

(execuধon of vector instrucধons). To this end, we will mostly focus on the OPC metric provided

by the vector analysis methodology.

Modificaধons

Given that CloudMicrophysics provides an enধre infrastructure to build and run different version,

and aiming to reduce the complexity of this miniApp, we have removed all of the parts that were

not related with the C version of this code. Moreover, we removed the dependencies on the

build tools (Ecbuild and CMake) and have wriħen a Makefile to have a more flexible and easy

way to build and run different configuraধons of this applicaধon. This also allowed us to build

and deploy CloudMicrophysics on SDV compuধng plaĤorms that are characterized by the lack

of the common infrastructure that we have in producধon plaĤorms. Focusing on the relevant

kernels, we have modified the source code to explicitly vectorize most parts of the code. These

modificaধons entail the addiধon at the beginning of for loops of vectorizaধon direcধves such as

pragma pragma omp simd or pragma clang loop vectorize(enable).

Contribuধons

We have detected a bug in the C version that was reported to the maintainers with the suggesধon

for a correcধon (bug report [31]).

8.2.6. Advecধon-MPDATA

Descripধon

Advecধon-MPDATA also refers to another applicaধon developed in the context of the ECMWF

Escape project called MPDATA (mulধdimensional posiধve definite advecধon transport algorithm)

for unstructured meshes (for more informaধon we refer the reader to document D1.1 Batch 1:

Definiধon of several Weather & Climate Dwarfs [23]). Its purpose is to solve the PDEs modelling

the advecধon on a sphere using an unstructured mesh with the MPDATA algorithm.
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Objecধves

Advecধon-MPDATA is used to understand the performance of running amore complex applicaধon

in the available MEEP environments. Given that this applicaধon uses MPI and OpenMP, we will

take advantage of Advecধon-MPDATA to inspect the mulধ-thread and mulধ-node performance

of this applicaধon. Addiধonally, we will also explore the vector performance of some parts of the

code that have been translated to C and therefore take advantage of compiler autovectorizaধon

infrastructure.

Modificaধons

This applicaধon is wriħen in Fortran and compared with CloudMicrophysics requires a more

complex infrastructure to build and run this applicaধon. However, we did not reduced this

complexity and instead ported some of the most ধme consuming funcধons to C. Specifically,

we focused on two disধnct funcধons: compute_fluxzdiv which is the most ধme consuming and

limit_scalar_flux that overall represents a bigger computaধonal loop. These modificaধons will

allow us to take advantage of the autovectorizaধon capabiliধes of the LLVM-EPI compiler as well

as the VPU hardware of MEEP.

8.3. Data Analyধcs benchmarks

This secধon describes the benchmarks used to explore common data analyধcs performance on

MEEP environments. We use two data analyধcs runধmes:

• TensorFlow is a free and open-source sođware library for machine learning and arধficial

intelligence. It can be used across a range of tasks but has a parধcular focus on training and

inference of deep neural networks. Due to the build system did not support for RISC-V on

MEEP we employ TensorFlow Lite framework. TensorFlow Lite only provides inference and

it is designed focusing on edge environments. As earlier explained we have enabled the

runধme on our RISC-V plaĤorms. TensorFlow has become commodity for training models.

In the context of MEEP project we will use the three main neural networks from which

most works derive: MobileNet, ResNet50 and VGG-19. Addiধonally we use MNIST as a

funcধonality checker, as it has become the ”hello world” for deep learning.

• Apache Spark is a mulধ-language engine for execuধng data engineering, data science and

machine learning on single-node machines or clusters. It allows for either batch or streaming

data with languages such Python, SQL, Scala, R or Java. Its main feature is that it brings

data closer to the place where it is computed: i.e, moves data from disk to memory for

faster processing. Thus increasing the performance over tradiধonal big data. It has become

a commodity technology for data mining and machine learning.

8.3.1. TensorFlow Lite models

Descripধon

Given that TensorFlow lite does only inference, we use pre-trained models. Over the trained

model we use a syntheধc benchmark to assess inference ধmings over the model.
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The models are a set of neural networks representaধve of current data analyধcs architectures.

The selected networks are:

• MNIST [29]: its input is a set of 10 hand-wriħen numbers from 0 to 9. It idenধfies the

corresponding hand-wriħen number. It is widely used as a hello world for deep learning.

• VGG-19 [36]: VGG19 is a variant of VGG model, which in short consists of 19 layers (16

convoluধon layers, 3 Fully connected layers, 5 MaxPool layers, and 1 SođMax layer). There

are other variants of VGG like VGG11, VGG16, and others. VGG19 has 19.6× 109 FLOPs.

• ResNet50: ResNet50 is a variant of the ResNet [24] model, which has 48 Convoluধon layers

along with 1 MaxPool and 1 Average Pool layer. It has 3.8× 109 FLOPS. It is a widely used
ResNet model.

• MobileNet [25]: the MobileNet model is based on depthwise separable convoluধons, which

is a form of factorized convoluধons that factorize a standard convoluধon into a depthwise

convoluধon and a 1× 1 convoluধon called a pointwise convoluধon.

We train each of the selected models, and we get a pre-trained graph for each of the models.

From there, the benchmark consists of taking an input graph and an input image. Then, it runs

inference over 50 iteraধons (parametrizable) and outputs the average inference ধme and standard

deviaধon, as well as the fastest and longest inference ধmings.

Objecধves

The benchmark is highly parametrizable in all its components. The parameters we will explore for

the benchmark are:

• Input images: all images that will be inferred on each iteraধon of the benchmark.

• Use xnnpack (boolean): whether or not to enable XNNPACK [7] algebraic opধmizaধons.

Highly benefits performance if vectorial instrucধons are enabled.

• Num threads: number of threads to be used for TFLite

• Allow fp16 (boolean): whether or not to enable FP16 operaধons. It will be used depending

on what architectures provide.

• Num runs: the number of iteraধons to be done for each input. Default: 50.

• Graph: the model to be used for inference.

• Dry run: if true, does an execuধon loading the model and allocaধng tensors but without

any computaধon (i.e., inference) performed.

• Warmup parameters: parameters to define how many inference iteraধons (or amount of

seconds) to do before running the actual benchmark.

• Use caching (boolean): to enable or not the use of cache.

• Run frequency: to execute at a given frequency rather than a given delay. By default, the

benchmark waits a pre-set ধme between inferences. However, we can define target frames
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per second. If not possible, the benchmark will iniধate the next iteraধon without waiধng

for the compleধon of the previous one, doing its best to catch up.

• Run delay: delay seconds between inference iteraধons.

• Max seconds: maximum seconds for the benchmark to complete. If exceeding mid-iteraধon,

the benchmark will complete the iteraধon but will stop ađerward. Default: 150s.

• Min seconds: minimum seconds to re-iterate for. Possible to make the number of inference

iteraধons done higher than the set.

The general metric to be used will be frames per cycle. Generally speaking, frames per second are

the most used measure of performance. However in the MEEP project we have several plaĤorms

with very different clock frequencies and characterisধcs. Consequently a beħer measure is to

translate seconds into cycles.

Sođware release

The pre-trained models are offered as an addiধonal RPM package which can be found at MEEP

Data Analyধcs Benchmarks webpage.

8.3.2. Spark Epistasis use case

Descripধon

Epistasis is the interacধon between genes that influences a phenotype. Genes can either mask

each other so that one is considered “dominant,” or they can combine to produce a new trait. It is

the condiধonal relaধonship between two genes that can determine a single phenotype of some

traits.

An HPC applicaধon has been developed to find all these interacধons. The applicaধon uses

Apache Spark to move the data from disk to memory. Since genome data is massive, the genome

is split into smaller parধধons. Once each of the parধধons is moved in memory by Spark, the

applicaধon leverages numpy to make the computaধonal part.

Objecধves

The objecধve of the workload is to compute as many variaধons as possible in the lesser ধme

possible. Consequently our base metric will be cycles. Instead of using the tradiধonal seconds, as

we have said earlier, it is a beħer measure when comparing with very different clock frequencies

among the different MEEP environments.

The parameters we can tune by the workload are:

• Vectorial vs non-vectorial: performance x86with vectorial instrucধons vs without vectorial

instrucধons (useful to compare with RISC-V plaĤorms).

• Number of nodes: limited number on arriesgado due to availability. We can’t do mulধ-node

tesধng on SDV or ACME-EA v0 (unless more nodes available with Ethernet communicaধon)

• Number of Paধents: use different cohorts with different amounts of paধents.
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• Parধধon sizes: dataset parধধon sizes. The number of samples that are processed at the

same ধme.

• Cross Validaধon sets: use a 5-fold CV or a 10-fold CV.

• Network usage: relevant in the case of mulধ-node runs.

Sođware release

The Epistasis use-case RPM can be found at MEEP Data Analyধcs Benchmarks webpage.

8.4. Workflows benchmarks

One part of the MEEP Sođware Stack is devoted to the development and orchestraধon of

parallel and distributed workflows with COMPSs. In this secধon, we present a set of Workflows

implementedwith PyCOMPSs (the Python binding of COMPSs) which could take benefit ofMEEP

capabiliধes. In the first part of the secধon, we present a set of dislib algorithms which implement

distributed workflows for ML. In the second part of the secধon, we present another workflow

use case which is focused on Hyper-Dimenধonal Compuধng.

The Sođware release of these workflows can be found in the MEEP Workflows Benchmarks

webpage

8.4.1. Dislib Algorithms

Descripধon

The Distributed Compuধng Library is a machine learning library that is built on top of PyCOMPSs,

thus provides machine learning algorithms that are distributed and parallel. The library focuses

on the execuধon of data analysis algorithms on distributed plaĤorms such as supercomputers.

QR Decomposiধon QR decomposiধon is the decomposiধon of a matrix into a QR product. A

more formal descripধon would be the following: Let A be am× nmatrix wherem > n, this can
be decomposed in a product of an orthogonal matrix Q (a real square matrix that all of its rows and

columns are orthonormal vectors) and an upper triangular matrix R.

There are several algorithms that perform such decomposiধon, which is usually used for cal-

culaধng the linear least squares. The most common algorithms are the Gram-Schmidt process,

Householder-Transformaধons, and several modificaধons of the past two. In dislib, the algorithm

that is used is the Householder-Transformaধons with a block factorizaধon.

Matrix Mulধplicaধon (MATMUL) Matrix mulধplicaধon is a classic algorithm that consists of

mulধplying two matrices. Even though this may seem an easy problem it needs a high computa-

ধonal power when the sizes of the matrices increase, the asymptoধc cost is O(n3).
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To parallelize the applicaধon, dislib approaches the problem by dividing the mulধplicaধons

matrices into smaller ones, this way parallelizing the computaধons.

Cascade Support Vector Machine (CSVM) This is an algorithm that is used for classifying data

in a supervised environment. As opposed to linear regression, the SVM can perform an efficient

classificaধon of non-linear data, using a kernel trick.

In the case of parallel environments, the SVM algorithm can be adapted to a CSVM. This is the

case of dislib’s CSVM, which is based on Graf et al. implementaধon. This implementaধon creates

a cascade-like structure that will allow the algorithm to be parallelized. Therefore the algorithm

will break the datasets into N sets that will be trained separately and then will be merged in pairs

to compute the support vectors, this is going to be done iteraধvely unধl a single set emerges.

KMeans This algorithm belongs to the clustering algorithms family. When using this algorithm

the user has to have an idea of howmany clusters will the dataset have, since one of the algorithm

parameters is the number of clusters (K). This algorithm usually starts with K (the number of

defined clusters by the user) randomly set centers in the space. Then it assigns to every data

point a single center based on the closest distance to it. Ađer assigning the points each center is

recalculated to be set in the new center for all the points assigned. Then this process is done

iteraধvely unধl the centers converge (are not updated from their posiধon).

The parallel version is performed by creaধng one task for every row in a block of the ds-array.

Then reducধon is performed, which adds all the data points that belong to a center.

Gaussian Mixture Model (GMM) This algorithm is used to represent the distribuধon of a series

of data as the sum of several Gaussian components. Those are assumed to be generated from a

mixture of Gaussian distribuধons. The goal of this algorithm is to maximize the likelihood of the

model that is generated to describe the data. Similar to KMeans, this is a clustering algorithm.

However, in this case, there is no need to define the number of clusters, so it can be considered

unsupervised learning.

Random Forest Classifier (RF) This algorithm is used to classify data in different classes. It

creates a series of decision trees that will use to aggregate their predicধons. The use of the

random forest instead of a single decision tree classifier is helpful since most applicaধons will

have a higher predicধon when aggregaধng the predicধons compared to when a single one is

used.

Objecধves

The objecধve has been to check the distribuধon. Moreover, we wanted to evaluate in MEEP

the kernel acceleraধon using vectorized mathemaধcal libraries with single and mulধcore and

comparing to execuধng with scalar instrucধons. Furthermore, another main objecধve has been

to execute using mulধple worker nodes and see the performance of MEEP when using mulধple

nodes to execute the applicaধon.

The performance analysis has been done by comparing the execuধon ধmes of the applicaধons

using different mathemaধcal acceleraধon libraries (different versions of BLIS). Addiধonally, using
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Extrae we have also evaluated the parallelism and execuধon ধmes of different parts in the

applicaধon funcধons.

Modificaধons

To run in the ACME EA plaĤorm, no code modificaধons are required. However to get benefit

of the acceleraধon provided by the plaĤorm, users have to use a Numpy version which is able

to use the accelerated BLIS. To do it, the user has to compile Numpy specifying the BLIS library

locaধon as explained in Secধon 5.7 and add the Numpy installaধon locaধon to the PYTHONPATH

environment variable.

8.4.2. Hyper-Dimensional Compuধng (HDC)

Descripধon

Hyper-Dimensional Compuধng also known as Vector Symbolic Architecture, is a compuধng

framework that tries to emulate the animal nervous system. It does so by represenধng the space

using the properধes of high-dimensional random vectors. The higher level idea is to represent

informaধon x ∈ X by protecধng it to the X hyperspace with d dimensions, usually those being
10.000. The space is usually represented as binary H = {0, 1}d or bipolar H = {−1, 1}d. One
essenধal part of HDC is encoding the data, therefore it is needed to create a mapping from

the data space, to the hyperspace φ : X → H. The encoding has the property that vectors are
holographic. In itself this means that the dimensions of the hypervectors are independent and

idenধcally distributed, this allows the hypervectors to be robust and each dimension carries the

same amount of informaধon.

Beijing PM2.5 polluধon This applicaধon tries to assess the polluধon in Bejing by learning from

different features from the dataset 1. From these features, metrics such as pressure, wind

direcধon, wind speed, accumulated snow, accumulated rain, dew point, PM2.5, can be extracted,

addiধonally, there is ধme data, which is an hour, day, and month. For this learning task, the aim is

to be able to predict the temperature.

This applicaধon is used to show the different predicধon accuracy depending on the basis hyper-

vector used for encoding the data. The aim is to show that using circular hypervectors will have a

beħer accuracy result since there is the ধme data that can be represented using circular data.

Objecধves

The objecধve has been to check the distribuধon. Moreover, we wanted to evaluate in MEEP

the kernel acceleraধon using vectorized mathemaধcal libraries with single and mulধcore and

comparing to execuধng with scalar instrucধons. Furthermore, another main objecধve has been

to execute using mulধple worker nodes and see the performance of MEEP when using mulধple

nodes to execute the applicaধon.

The performance analysis has been done by comparing the execuধon ধmes of the applicaধons

using different mathemaধcal acceleraধon libraries (different versions of BLIS). Addiধonally, using

1https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
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Extrae we have also evaluated the parallelism and execuধon ধmes of different parts in the

applicaধon funcধons.

Contribuধons

This HDC applicaধon has been ported to the COMPSs framework, therefore parallelizing it. Apart

from that, to get benefit of the acceleraধon provided by MEEP, the user has to use a Numpy

version which is able to use the accelerated BLIS. To do it, the user has to first install Numpy

specifying the BLIS library locaধon as explained in Secধon 5.7 and add the installaধon locaধon

to the PYTHONPATH environment variable.

8.5. Systolic Array benchmarks

In D5.1 Benchmark suite of HPC applicaࣅons we also included the MLPerf and the Bolt66-App as

part of the benchmarks suite. These applicaধons aim to funcধonally validate the implementaধon

of the two MEEP Systolic Arrays, as well as to evaluate their performance.

We will present the applicaধon porধng as well as its evaluaধon in the upcoming deliverable

D5.4 Final release of the sođware stacked (M42). The applicaধon porধng will leverage the custom

instrucধons presented in Secধon 4.3 and detailed in Appendix A.
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9. The MEEP Offload Mode

In this secধon we present the Offload Mode of the MEEP accelerator, and the support required

for single and mulধple devices.

9.1. Single-device support

We have implemented a prototype infrastructure supporধng OpenMP offload between the

Intel Host, acধng as the applicaধon runner, and the RISC-V on the FPGA, acধng as the device

accelerator.

In this secধon we present the compiler and runধme infrastructure that we have implemented for

this purpose. It is based on a previous implementaধon done by FORTH (Crete, Greece), in the

context of the EPI project, that we have adapted to the MEEP environment.

9.1.1. Compiler support for MEEP offload

The support for the MEEP offload uses the code generated from the LLVM compiler. For the

MEEP offload, the compiler is invoked to compile for an Intel Host and a RISC-V target device. It

has been configured to generate x86_64 code for the Host and RISC-V rv64imafdc code for the

RISC-V as an accelerator.

When configured, the compiler generates code for the OpenMP direcধves in such a way that

the regular code runs in the Intel architecture, and the code annotated with the target direcধve

is spawned onto the RISC-V accelerator. LLVM is able to encapsulate the RISC-V binary as a

target secধon in the host binary. The management of the RISC-V code is leđ to the libomptarget

LLVM-OpenMP support library.

9.1.2. Runধme support for MEEP offload

The support for OpenMP target on the Host side is implemented as a plugin to the libomptarget

library. In our case, we have adapted the plugin developed by FORTH in the EPI project to work

with the RISC-V accelerator on the FPGA.

Currently, the support that has been implemented on the prototype covers these services:

• Support the Host side communicaধons with the target device.

• Check and transfer the RISC-V binary to the RISC-V environment.

• Determine the number of devices available. We currently support a single one.

• Iniধalizaধon and finalizaধon of the applicaধon on the device side.

• Allocaধng and deallocaধng data areas for the device.
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Figure 5: Diagram of the MEEP Offload infrastructure

• Transfer data into the device, and out of the device.

• Manage the target regions of code to run code onto the device.

The current implementaধon is missing the following funcধonaliধes:

• Manage the target teams regions.

• Asynchronous management of data transfers.

• Asynchronous management of code regions.

Figure 5 shows the way communicaধons are implemented between the Host and the RISC-V.

The communicaধons are implemented through a specific shared memory area laid out between

the Host and the RISC-V (Data-xchg). This shared memory region is implemented either as a

BlockRAM in the FPGA chip, or as part of the DRAM/HBM memory on the FPGA board. This

shared memory area is accessed using the QDMAdriver services for DMA transfers. In the current

implementaধon the DMA transfers issued through the QDMA driver are not interacধng with the

Openpiton memory hierarchy on the RISC-V side. Any data that is actually on the processors

cache memory is not invalidated when a DMA transfer happens from the Host side. For this

reason, the prototype cannot use the full range of HBM memory to support large data structures.

The shared memory area is implemented in the I/O space, and thus is not cached by Openpiton

in the cache hierarchy. We have implemented this infrastructure as a demonstrator prototype,

not full-fledged, so no addiধonal copies are done between the reduced-size memory in the I/O

space, and the Offload server memory. This reduces the size of the applicaধon data to only a few

tens of Kbytes.

The shared memory area is structured as a small descriptor containing the idenধfier of each

service requested, and a specific slot area that is structured according to each service requested.

The descripধon of the services is presented in secধon 9.1.3.
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9.1.3. RISC-V side offload support

On the RISC-V side we run a server that waits for requests for target offload commands from the

host.

When transferring a binary file, it is temporarily stored in the slot area, saved in the local file

system on the RISC-V side, and then loaded into the server applicaধon space.

The target binary has a specific entries secধon, that is used to find the symbols that can be invoked

as OpenMP target regions. This secধon is used every ধme that a new target region is invoked

from the host, through the offload target region service.

Before invoking a target region, the Host code allocates the data regions needed, and copies the

input data for the variables marked as to.

The offload target region service receives a funcধon idenধfier and its arguments. The server

uses the services of the foreign-funcধon interface (libffi) in order to invoke the proper funcধon

implemenধng the requested region, with its associated arguments.

Ađer the execuধon of a region, the Host code transfers the data out for those variables marked

as from.

9.1.4. Tesধng

We have tested the prototype infrastructure with a pair of examples:

• A test sample showing the ability to iniধalize and copy data.

• A matrix mulধplicaধon example.

With these tests we demonstrated the feasibility to implement the OpenMP offload services on

the MEEP environment.

9.1.5. BLIS single-device approach

The offload execuধon mode of BLIS differs from the self-hosted mode in the sense that when

the host launches the applicaধon and we have a call to a BLIS service, the respecধve workload is

offloaded to the available accelerators in the compuধng plaĤorm. Specifically, we offload and

distribute the workload in two different forms: 1) The work performed from BLIS is offloaded

to only one accelerator (single-device) or 2) the workload is distributed among a set of devices

(mulধ-device approach).

The BLIS single-device approach exploraধon was developed using a compuধng plaĤorm that is

characterized by a host (CPU) and a set of connected accelerators (GPUs). Moreover, to offload

computaধons from the host to the accelerator we relied on the OpenMP programming model,

specifically the omp target construct.

Next, we highlight the nature of adaptaধons that are needed for an applicaধon to take advantage
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of the BLIS offload version. Thus, we have to make two clear disধncধons: first, the modificaধon

in the applicaধon side that the end user has to perform and second, the modificaধons on the

BLIS library. From the applicaধon side, the user should be responsible for creaধng a data shared

environment using the #pragma omp target data map direcধve (see Lisধng 19). This will allow

the re-uধlizaধon of data on the accelerator and no extra communicaধons between host and

accelerator are needed, because we are working with data that lives in the device (with the

excepধon of synchronizaধon that might need to occur if the host updates variable that are in the

device).

int main(){
// Initalization phase ...
init(x,y);
// 1st set of computations ...
// Offload BLAS computations to accelerator
#pragma omp target data map(to:x[0:n]) map(tofrom:y[0:n])
{

// 1st call to a BLIS routine
cblas_daxpy(n, scalar, x, 1, y, 1);
// 2nd call of a BLIS routine
double dot_product = cblas_ddot(n,x,1,y,1);
// More BLIS routine calls ...

}
// More computations ...
// Final ...

}

Lisধng 19: Example of an applicaধon that defines a data shared environment where a set of BLIS

rouধnes are called.

Themodificaধons needed in the BLIS library share similariধeswith the applicaধon side, specifically,

here we also have to create a data shared environment. The addiধonal step is the inclusion of the

#pragma omp target teams distribute parallel for (see Lisধng 20) direcধve before the for loops so

that the workload is actually divided and computed by the accelerator.

void PASTEMAC3(ch,opname,arch,suf)(conj_t conjx,dim_t n,
ctype* restrict x,inc_t incx,ctype* restrict y,
inc_t incy,cntx_t* restrict cntx)

{
// ...
_Pragma("omp target data map(to:x[0:n]) map(tofrom:y[0:n])")
{

ctype* restrict chi1 = x;
ctype* restrict psi1 = y;

if ( bli_is_conj( conjx ) ) {
if ( incx == 1 && incy == 1 ) {

_Pragma("omp target teams distribute parallel for")
for ( dim_t i = 0; i < n; ++i ) {
PASTEMAC(ch,addjs)( chi1[i], psi1[i] );

}
}
else {

// ...
}

}
}

Lisধng 20: Example of the nature of modificaধons done in the BLIS kernels.
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Figure 6 shows a ধmeline of an applicaধon that calls three BLAS kernels (in this example the

vector addiধon). We can decompose this figure in three phases:

• In the first phase we have the transfer of data from host to device that corresponds to the

two arrays (x and y) that we are updaধng (shown in the figure as the top dashed-green box).

• The second phase (middle dashed-red box) demonstrates the call of the three BLAS level 1

kernels.

• The third phase (boħom dashed-green box), shows the retrieving of the data ađer all

computaধons have been finished in the accelerator.

Figure 6: Time profile of an applicaধon that calls three ধmes the BLAS vector addiধon kernel,

using Nvidia’s profiler tool. Time dimension is read in each row, while the type of computaধons

can be seen in the last column (column called Name with aħributes such as CUDAmemcpy HtoD,

bli_daddv_generic_ref, among others).

For BLAS levels 1 and 2, this analysis demonstrates that we have a successful offload and

re-uধlizaধon of data, as we do not see any memory operaধons in between the BLAS kernel

execuধons. However, for BLAS level 3 kernels, we do not achieve the same behaviour, therefore,

we are not able to apply the same methodology. Yes, it is true that we have a successful offload

of the BLIS rouধnes to the accelerator, but we are not able to reuse data. Hence, we end up

with extra communicaধons in between host and device, when calling consecuধve BLAS level 3

kernels. This behaviour is shown in Figure 7, where we can report the following:

• First phase with the transfer of data from host to the accelerator (top dashed-green box).

• In the next phase we can group the three calls to the matrix mulধplicaধon BLAS kernel

(red-dashed boxes). Here, we can observe that in between BLIS kernel calls there are two

sets of data transfers from the host to the accelerator (dashed-green boxes). It is true that

during the enধre execuধon of each BLIS kernel we have data re-use, altough in between

kernel calls we observe data transfers and if data was being reused, these data transfers

between the kernels calls should not be present. This should be true because we already

transferred this data in the beginning of the computaধons and all kernels work over the

same data. This behaviour might be explained by the fact that the OpenMP runধme is not

able to detect that new allocaধons for this data are done by the BLIS infrastructure.

• The last phase is characterized by the retrieving of the resultant matrix to the host side

(boħom dashed-green box).

In summary, we achieve the desired behaviour for BLAS 1 and 2 levels, but there is no re-uধlizaধon

of data for the third BLAS level and thus a different approach should be devised to achieve a

re-uধlizaধon of data in the accelerators.
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Figure 7: Time profile of an applicaধon that calls three ধmes the BLAS vector addiধon kernel,

using Nvidia’s profiler tool. Time dimension is read in each row, while the type of computaধons

can be seen in the last column (column called Name with aħributes such as CUDAmemcpy HtoD,

bli_dgemm_generic_ref, among others).

9.2. Mulধ-device support

One of the possible scenarios considered earlier in the MEEP project was that a single node could

offer many accelerators where work could be offload to. This led us to idenধfy a gap in OpenMP

support for offloading.

OpenMP has offloading support since version 4.0. However, the interface offered by OpenMP

only allows offloading to a single device at a ধme. Under a context of a host node with many,

regular, accelerators, OpenMP does not offer convenient syntax for this use case.

9.2.1. OpenMP extensions

We proposed an extension to OpenMP in which we introduce a new OpenMP construct called

target spread. Instead of receiving a single device clause, the spread construct has a devices
clause which represents the set of devices that will execute the offloaded region. Rather than

choosing a design similar to that of the OpenMP parallel construct, where execuধon would be

replicated among devices, we chose to constraint target spread to OpenMP loops.

Constraining ourselves to loops allows us to introduce two special values, omp_spread_start
and omp_spread_size which represent the set of iteraধons that a device executes. Our iniধal
implementaধon focused on a staধc scheduling approach: the iteraধons are divided among devices

using a chunk size that can be specified by the user. Lisধng 21 shows an example of the target
spread construct applied to a SAXPY kernel.

void saxpy_multi_dev(int n, float a, float *x, float *y) {
#pragma omp target spread \

devices(0, 1, 2, 3) \
spread_schedule(static, 1024) \
map(to: a[omp_spread_start:omp_spread_size]) \
map(tofrom: y[omp_spread_start:omp_spread_size])

for (int i = 0; i < n; ++i)
y[i] = a * x[i] + y[i];

D5.3 v1.0 66 / 91



}

Lisধng 21: Example of the target spread construct applied to a simple SAXPY kernel.

One limitaধon of centering the extension around loops is that data transfers in OpenMP can be

defined at arbitrary parts of the code. We generalised the data transfer constructs into spread

versions. The mulধple devices context was defined in a new clause called range. Lisধng 22
shows the spread version of data transfer constructs OpenMP. Lisধng 23 shows that the same

syntax can be used in the scoped target data construct.

#pragma omp target enter data spread \
devices(2,0,1) \
range(1:N-2) \
chunk_size(4) \
nowait \
map(to:A[omp_spread_start -1:omp_spread_size+2], \
B[omp_spread_start :omp_spread_size ])

#pragma omp target exit data spread \
devices(2,0,1) \
range(1:N-2) \
chunk_size(4) \
nowait \
map(from:A[omp_spread_start:omp_spread_size], \
B[omp_spread_start:omp_spread_size])

#pragma omp target update spread \
devices(2,0,1) \
range(1:N-2) \
chunk_size(4) \
nowait \
to( A[omp_spread_start -1:omp_spread_size+2]) \
from(B[omp_spread_start :omp_spread_size ])

Lisধng 22: Example of the target {enter|exit|update} data spread constructs

#pragma omp target data spread \
devices(2,0,1) \
range(1:N-2) \
chunk_size(4) \
map(tofrom:A[omp_spread_start -1:omp_spread_size+2], \
B[omp_spread_start :omp_spread_size ])

{
...

}

Lisধng 23: Example of the target data spread construct

9.2.2. Compiler support for mulধ-devices

The proposal of the previous secধon was implemented in the C/C++ frontend of LLVM. Very

minimal changes were done to the runধme, only to support a new kind of schedule for the loops

that we marked as target spread.

Clang lowers its C/C++ input, represented in the frontend using the Clang AST, directly into

LLVM IR which already contains calls to the runধme. Our proposal can be seen as another kind
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of desugaring from OpenMP to the OpenMP runধme funcধons. In our case it was possible to

express our transformaধon in the form of the exisধng target construct.

The implementaধon has been tested on a system equipped with four NVIDIA A100 GPUs.

9.2.3. Middle-ware extensions

In a mulধ-device environment, each accelerator will have a range of DMA-capable memory, to be

used for the Host – Accelerator communicaধons.

Supporধng mulধple devices for the MEEP offload mode will require to update the libomptarget

LLVM-OpenMP support library to access these separate memory areas for the implementaধon

of the DMA transfers to the different accelerators.

The OpenMP infrastructure already supports Accelerator-IDs, in order to operate with different

accelerators, and is able to distribute the work from a target loop onto them.

9.2.4. BLIS mulধ-device approach

The exploraধon done in this context is purely a conceptual formulaধon of how this approach

should behave. Thus, the BLIS mulধ-device approach should follow a similar paħern as shown in

the BLIS single-device approach secধon. This means that in the applicaধon side a data parallel

environment is created (Lisধngs 24) using the target data spread construct. Here, we should

define the variables that are going to be offloaded to the mulধple devices. The set of mulধple

devices can be defined as a variable (DEVICESET) that is set manually or inquired by the runধme.

By default each offloaded variable will be divided into chunks as a funcধon of the number of

devices.

int main(){
// Initalization phase ...
init(x,y);
// 1st set of computations ...
// Offload BLAS computations to accelerator
#pragma omp target data spread \
map(spread(devices(DEVICESET),range(0:n)), \
to: x[omp_chunk_start:omp_chunk_size]) \
map(spread(devices(DEVICESET),range(0:n)), \
tofrom: y[omp_chunk_start:omp_chunk_size])
{

// 1st call to a BLIS routine
cblas_daxpy(n, scalar, x, 1, y, 1);
// 2nd call of a BLIS routine
double dot_product = cblas_ddot(n,x,1,y,1);
// More BLIS routine calls ...

}
// More computations ...
// Final ...

}

Lisধng 24: Example of an applicaধon that defines a data shared environment where a set of BLIS

rouধnes are called.
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The modificaধons in the BLAS library rely on the newly proposed target spread devices construct

(Lisধngs 25). The first step should be to reproduce again the data shared environment using

the aforemenধoned target data spread construct. To offload and distribute work among the set

of devices we should add the target spread devices construct, when encountering a for loop. To

make sure that work is computed in parallel by all the devices, we have to setup a set threads

(minimum one per device) and therefore, we have to add the parallel and single constructs (the last

one just to have one thread creaধng the required tasks to complete the assigned computaধons).

void PASTEMAC3(ch,opname,arch,suf)(conj_t conjx,dim_t n,
ctype* restrict x,inc_t incx,ctype* restrict y,
inc_t incy,cntx_t* restrict cntx)

{
// ...
_Pragma("omp target data spread \
map(spread(devices(DEVICESET), range(0:n)), \
to: x[omp_chunk_start:omp_chunk_size]) \
map(spread(devices(DEVICESET), range(0:n)), \
tofrom: y[omp_chunk_start:omp_chunk_size])")
{

if ( bli_is_conj( conjx ) ) {
if ( incx == 1 && incy == 1 ) {

_Pragma("omp parallel")
_pragma("omp single")
_Pragma("omp target spread devices(DEVICESET) nowait")
for ( dim_t i = 0; i < n; ++i ) {
PASTEMAC(ch,addjs)( x[i], y[i] );

}
}
else {

// ...
}

}
}

}

Lisধng 25: Example of the nature of modificaধons done in the BLIS kernels.

9.2.5. Impact on OpenMP

While flexible, CPUs may not be able to fulfill the performance requirement of specific workloads.

In that sense, we believe that accelerators will become more prevalent. A plausible scenario will

be systems equipped with several accelerators, with similar performance characterisধcs, as it

may happen in mulধ-GPU systems.

In that sense, OpenMP should provide an answer in the form of a convenient mechanism to

exploit those mulধ-device systems. Our proposal is a first step towards that goal. It has been

presented in meeধngs at the OpenMP commiħee, and while our proposal may not be the one

eventually chosen, we believe it has sparked conversaধons about the forthcoming mulধ-device

reality of systems.
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10. Conclusions

In this deliverable we have presented the current status of the full MEEP Sođware Stack: from the

Operaধng System low-level support, to the higher levels of the applicaধon layer. The integraধon

of all these components aim to allowACME EA programmers to exploit all the system capabiliধes,

being able to deploy their own use cases, and to obtain useful informaধon to infer the performance

behaviour. As described in the Descripধon of Acধon (DoA): ”all the applicaࣅon that have been

idenࣅfed are ported to run on top of the emulaࣅon plaĤorm”; and for each applicaধon’s entry we

have also described the metric of interest and its evaluaধon methodology (from DoA: ”The final

phase will focus on applicaࣅon performance evaluaࣅon and debugging”). In short, we are fulfilling

the deliverable’s requirements and, in addiধon, reporধng the current state of the whole Sođware

Stack.

On the Operaধng System, we have included the support for communicaধons on the ACME EA

infrastructure. On the one hand, we have implemented a Linux driver on both the host and

RISC-V sides supporধng Ethernet communicaধons over the FPGA PCIe connector. On the host

side, we have integrated this support on the QDMA driver by using another driver provided by

Xilinx: the Open NIC driver. On the RISC-V side, we have adapted the same Open NIC driver to

work with the shared memory that the plaĤorm implements.

On the other hand, we have adapted the Ethernet driver developed on the EPI project to the

MEEP infrastructure to work with the FPGA QSFP connectors at 10/100 Gbit, allowing point to

point communicaধons with other FPGA boards, or connecধvity through a switch.

The compiler infrastructure available on MEEP, based on LLVM, effecধvely supports the two

main accelerators of MEEP: the RISC-VVector Extension and the two Systolic Arrays of MEEP.

The vector support leverages previous work done on LLVM in other projects. Thanks to the vector

length agnosধc nature of the RISC-VVector Extension allows for exploring scenarios where the

sođware can communicate facts to the hardware. The hardware can choose to change some of

its characteriধcs, such as the vector length, as an answer to this informaধon. We have explored

prefetch instrucধons to convey memory access informaধon to the CPU with mixed results.

The Systolic Array support is a new development that enables interfacing the MEEP Systolic

Arrays via an ISA interface. This ISA interface is built on top of an extension of RISC-V.

The workflow management system provided in the MEEP Sođware stack is COMPSs, it provides

a programming model and runধme to create parallel and distributed workflows as simple Java

programs and Python Scripts(PyCOMPSs). We have ported the COMPSs runধme to run in RISC-V

64-bit architecture, and this modificaধons have been incorporated in the main development

branch and released in the latest COMPSs version 3.0 and 3.1. We have also created RPM

packages and container images to facilitate its installaধon and usage.

BLIS is the BLAS library used to provide applicaধons the linear algebra funcধonaliধes that they

required. This library has been adapted to be used on each MEEP environment: first, we have

added support for execuধon of vector instrucধons based on the OpenMP SIMD direcধves and

second we provide a set of configuraধons for each of the MEEP compuধng plaĤorms. Moreover,

we explored the use of this library with a mechanisms, based on OpenMP, to offload all BLIS

computaধons into the available plaĤorm accelerators. Specifically, we base this approach on
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the target teams distribute for plaĤorms characterized by a single accelerator and on the newly

proposed target spread construct that can be used to distribute work among a set of accelerators.

We have enabled the runধmes of TensorFlow Lite and Apache Spark for RISC-V architectures.

Moreover, Epistasia use-case for Spark can be run inside a singularity container. We have included

both runধmes as RPMpackages. We have also enabled benchmarks for four deep neural networks

comprising 99% of the use-cases for deep learning. Finally Epistasia use-case can be offloaded

through numpy and BLIS, as most of the computaধonal part is done through numpy.

Regarding container support, we have enabled the usage of most used container engines for the

RISC-V 64bits architectures and included in the MEEP OS distribuধon. We have created RPM

packages for Moby, the open source version of Docker, which is the most used container engine,

Podman a trending alternaধve for Docker and Singularity as the most used container engine in

HPC environments.

In Secধon 7.1 we have described the sođware components included in the MEEP sođware

stack that will allow to apply the proposed Performance Analysis Methodology to the different

benchmarks. This list of components includes Extrae, PAPI, and Libunwind. We have created

RPM packages for all of them, as it can be seen in Tables 9 and 10.

The system benchmarks are intended to understand the behaviour of all MEEP environments.

One of the benchmarks is called Stream and is used to benchmark the performance of the memory

architecture. The remaining system benchmarks, EPCC-OpenMP and EPCC-OpenMP/MPI, are

applied to understand the overheads of common HPC runধmes such as OpenMP and MPI.

The set of HPC benchmarks range from very simple and common HPC operaধons (RISC-V

benchmarks) and evolve to more complex and representaধve HPC workloads (HPL, HPGC,

FFTXLib, CloudMicrophysics andAdvecধon-MPDATA). The goal is to understand the performance

of the applicaধons on all MEEP environments by looking at different characterisধcs such as vector

instrucধon performance, mulধ-thread and mulধ-node execuধons.

Actually this goal could be extended to Workflow and Data Analyধc benchmarks, although

in these cases we plan to check the performance in a higher level of abstracধon, looking for

scalability tests and general characterizaধon of these kind of workloads.

TheMEEPproject also envisioned a systemwithmany accelerators, exposing a gap in theOpenMP

support for more than one device in the context of offloading. We proposed a new extension to

the OpenMP target model with the goal to reduce this gap. This proposal was shared with the

OpenMP commiħee.

10.1. Summary of releases

In this secধon we gather all the informaধon about releases spreaded all along this document. In

addiধon we also include the specific type of release for each sođware item.

All the releases have been centralized into a unique web site: . Visitors may navigate among

its different secধons and found the desired sođware component. There are three secধons

specifically devoted to sođware:

• OS Layer: have the descripধon to install the Operaধng System. It points to the different
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Sođware Component IMG RPM SRC Docker

LLVM Compiler (Vector/SA) Yes – Yes riscv64/fedora

LLVM Compiler Mulধ-device – – Yes

Ethernet driver Yes – –

Moby Yes Yes –

Podman – Yes –

Singularity – Yes –

Java Zero VM 11.x Yes – – riscv64/fedora

Java Server JIT Yes Yes – riscv64/fedora

Python 3.x Yes – – riscv64/fedora

Libunwind Yes Yes –

Table 9: List of fundamental packages

files needed for that process.

• Toolchain: have the list of sođware components that could be installed in the system:

compiler, runধmes, and libraries.

• Benchmarks: have the list ofworkloads tested in the project and provided for reproducibility

purposes.

For each entry in the release website, the content will direct the visitor to the corresponding

releases. As described in the Secধon 2.1 they could be any of the following opধons:

• included in the OS image,

• a source code repository,

• an installabe RPM package, or

• included in a docker image.

In certain cases, there will be mulধple of these opধons available. For instance, the Extrae

package could be already included in the Operaধng System default image, but also available

as an independent RPM package, so any update happening in this package could be updated

by running the yum command beħer that downloading again the full Operaধng System image.

Tables 9, 10, and 10.1 summarizes the types of releases available for each sođware component.
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Sođware Component IMG RPM SRC Docker

COMPSs Yes Yes Yes riscv64/compss

TF Lite Yes Yes Yes riscv64/Ĥlite

Apache Spark – Yes Yes riscv64/spark

MPICH Yes – – riscv64/fedora

BLIS (self-hosted) Yes Yes Yes

BLIS (spread) – – Yes

Extrae Yes Yes –

PAPI Yes Yes –

PAPI LW Yes Yes –

PAPI LW (vhwc) Yes Yes –

Table 10: List of runধmes and libraries

Sođware Component IMG RPM SRC Docker

Dislib – pip – riscv64/compss

Epistasia (Spark) – Yes – riscv64/spark

TFLite Benchmakrs – Yes – riscv64/Ĥlite

RISC-V Benchmarks – – Yes

HPCG – – Yes

HPL – – Yes

FFTXlib – – Yes

EPCC Benchmarks – – Yes

MPI Benchmarks – – Yes

Stream – – Yes

Table 11: List of benchmarks
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11. List of Acronyms

AI Arধficial Intelligence

API Applicaধon Programming Interface

BLAS Basic Linear Algebra Services

BSC Barcelona Supercompuধng Center

CGMT Coarse-Grain Mulধthreading

CoE Center of Excellence

CPU Central Processing Unit

DA Data Analyধcs

DL Deep Learning

DoA Descripধon of Acধon (Annex 1 of the Grant Agreement)

DMA Direct Memory Access

DTB Device Tree Blob

DTS Device Tree Source

Dx.y (MEEP) Deliverable, where x is the WP, and y is the document id within the WP

EA Emulated Accelerator

EPI European Processor Iniধaধve

FGMT Fine-Grain Mulধ-Threading

FPGA Field Programmable Gate Array

GB Gigabyte, 109 bytes

GPU Graphics Processing Unit

GiB Gibibit, 230 bits

HBM High Bandwidth Memory

HPC High Performance Compuধng

HPCG High Performance Conjugate Gradient

HPDA High Performance Data Analyধcs

HPL High Performance Linpack
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HSS Hart sođware Services

ISA Instrucধon Set Architecture

JIT Just in Time (compilers)

MC Memory Controller

MEEP MareNostrum Experimental Exascale PlaĤorm

Mnn (MEEP) Project Month, where nn is a numerical value

MSn (MEEP) Project Milestone, where n is a numerical value

ML Machine Learning

NIC Network Interface Card

NVRAM Non-volaধle Random Access Memory (e.g., 3D XPoint)

OAI Open Accelerator Infrastructure

OAI-OAM Open Accelerator Infrastructure OCPAccelerator Module

OAM Open Compute Accelerator Module

OCP Open Compute Project

ONIC Open NIC

OOO Out of Order (CPU)

OS Operaধng System

PGAS Parধধoned Global Address Space

POP2 Performance Opধmisaধon and Producধvity

QDMA Queue Direct Memory Access (Xilinx)

ROM Read-Only Memory

RTL Register Transfer Level (Hardware Descripধon Language)

SA Systolic Array

SBI Supervisor Binary Interface

SCIF Symmetric Communicaধon Interface

SD Secure Digital (card)

SDK Sođware Development Kit
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SIMD Single Instrucধon Mulধple Data

SoC System on Chip

TPU Tensor Processing Unit

TCG Tiny Core Generator

UBB Universal Base Board

VOP Virধo Over PCIe

VPU Vector Processing Unit

WP Project Work Package
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A. Systolic Array Specificaধon

This appending includes the current version of the MEEP Systolic Array specificaধon.
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1. Introduction

This is the MEEP Systolic Array Extension (MEEP SA). This is an extension of the RISC-V ISA intended to offer an instruction
level interface to systolic array operation as envisioned in the context of the MEEP project.

This ISA extension depends on the Vector Extension (V) ISA being available.

This extension models the access to the systolic array functionality similarly to that of a coprocessor.

Note The MEEP SA requires at the very least a base RISC-V implementation of RV64IMV.

1.1. ISA name

This extension is named meepsa. Given that it is a nonstandard extension, the ISA speci�cation is Xmeepsa. For instance a
Linux capable 64-bit CPU that implements the V extension 0.7.1 and the MEEP Systolic Array could be named
RV64GC_V0p7_Xmeepsa.
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2. MEEP SA Programmer Model

The MEEP SA extension provides an instruction-based interface for the 2 systolic arrays considered in the MEEP project.
Each systolic array is assigned an identi�er 0 or 1 which is used to identify the architectural state of each systolic array. This
identi�er is generically noted in this speci�cation using <n> notation.

This extension adds 31 systolic registers per systolic array to the base scalar RISC-V ISA of size SALEN.<n>. The extension
also adds three unprivileged CSRs sastatus.<n>, saoplen.<n>.0, saoplen.<n>.1 of size XLEN bits.

Table 1. New systolic CSRs
Address Privilege Name Description
0x8D0+n URW sasatus.<n> Systolic array status
0x8D2+n URW saoplen.<n>.0 Systolic array operational length 0.
0x8D4+n URW saoplen.<n>.1 Systolic array operational length 1.

The value of saoplen.<n>.<m> is always zero or positive magnitude smaller or equal to SALEN.<n> / 8.

Note Two operational lengths are speci�ed for systolic arrays that operate with bidimensional data.

2.1. Systolic Array Identi�cation

All the instructions in this extension are executed under the context of a speci�c systolic array. There is a systolic array
identi�er of 1 bit called said which is encoded in the instructions.

Note
This extension supports up to 2 systolic arrays at the same time in the same system. A systolic array may not have a use for
saoplen.<n>.1 in which case it is assumed to be hardcoded to value 1. Also in this case sastatus.<n>.illoplen.1 may be set
to 1 if the value con�gured in saoplen.<n>.1 is not 1.

2.2. Systolic Registers

The MEEP SA extension adds 31 architectural systolic registers sa.<n>.0-sa.<n>.30 to the base scalar RISC-V ISA. Their
size is SALEN.<n> bits.

Systolic registers are logically divided in elements of 8-bit size, numbered from 0 to SALEN.<n> / 8.

Note
The assembly syntax does not use the systolic identi�er in the systolic register names because the instruction already establishes the
context. Their names in the assembly syntax are sa0 to sa31.

Note
The registers are only divided in elements of size byte for semantic purposes. An implementation may group the elements and
require saoplen.<n>.<m> be a multiple of that group size.

2.3. Systolic Speci�c Registers

A systolic array may de�ne few systolic-speci�c registers (ssr). Those registers have XLEN size and and are not exposed to
the rest of the architecture.

2.4. Systolic Array Status, sastatus.<n>

This CSR contains the operational state of a speci�c systolic array. This is a read-only register.

This speci�cation de�nes the following bits in this CSR.
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Table 2. sastatus.<n> register layout
Bits Name Description

63:32 implementation Implementation-de�ned status of the SA
31:4 reserved Reserved for the MEEP-SA spec

4 sastatus.<n>.illoplen.1 The SA cannot operate under the given operational length 1
3 sastatus.<n>.illoplen.0 The SA cannot operate under the given operational length 0
2 sastatus.<n>.busy The SA is operating
1 sastatus.<n>.ready The SA is ready to accept an operation
0 sastatus.<n>.enabled The SA is enabled and can execute operations

Note Some of those �elds may not be needed and will be removed.

sastatus.<n>.enabled establishes that operations for the systolic array <n> can be executed by the instruction. When
this bit is set to zero a systolic array instruction directed to the systolic array <n> will cause an illegal instruction fault.

sastatus.<n>.ready establishes that a systolic array can accept new operation requests. When this bit clear the
execution of a systolic array must behave like a no-operation. A systolic array implementation may choose to always
present this bit as set and stall the execution of an instruction until it can accept it.

sastatus.<n>.busy establishes that a systolic array is operating. This status is purely informational and does not have
functional consequences for the software.

sastatus.<n>.illoplen.<m> establishes that a systolic array was requested an operational length that is not valid.
These bit are modi�ed by the instructions sa.setopleni and sa.setoplen.

Bits 31:4 are reserved for further extensions of MEEP-SA. These bits should be left cleared.

Bits 63:32 are reserved for the implementation. Their allowable values are implementation-de�ned but must include an all-
zeros valid setting.
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3. Systolic Array Instruction Formats

This speci�cation de�nes the following instruction formats.

Note
This extension uses the major opcode custom-1 as de�ned in the RISC-V Instruction Set Manual. This means that
inst[6:0]=0101011.

3.1. SACFG formats

3.1.1. SACFG.i

0671112141519202425262731

1101010rd111zimm[4:0]sacsr1said00000

custom-1sacfgi

3.1.2. SACFG.r

0671112141519202425262731

1101010rd111rs1sacsr0said00000

custom-1sacfgr

3.2. SAOP format

This is the format for operations that are going to be carried out by the Systolic Array.

067111213141519202425262731

1101010sadst10op[0:1]sasrc1sasrc2ndsaidsasrc3/sadst2

custom-1saop

3.3. SAMEM formats

3.3.1. SAMEM.L format

0671112141519202122252627282931

1101010sadest100rs1esize0000saidopdim000

custom-1destination of loadsamem.loadaddresselement size

3.3.2. SAMEM.S format

0671112141519202122252627282931

1101010sasrc110rs1esize0000saidopdim000

custom-1source of storesamem.storeaddresselement size
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4. Common instructions

The instruction interface de�nes a set of common instuctions that are available for all the systolic arrays.

A systolic array register operand sa.<n>.<m> is encoded in a 5-bit �eld using the binary encoding of <m>.

Note 0b11111 is not a valid encoding for a systolic array register.

4.1. Set operational length

Instruction sa.setopleni.<n>.<m> rdest, zimm5 is used to set the operational length m of a systolic array.

There is a register form of this instruction sa.setoplen.<n>.<m> rdest, rs1. The value of the operational length <m>
is set from the value in the the register rsrc1.

Both instructions are encoded with the SACFG format. sa.setopleni.<n>.<m> is encoded using the SACFG.i format.
sa.setoplen.<n>.<m> is encoded using the SACFG.r format.

Table 3. sacsr �eld encoding
Register sacsr Notes

0b00000 sastatus.<n>.0 Not a valid operand of sa.setoplen / sa.setopleni.
0b00001 saoplen.<n>.0
0b00010 saoplen.<n>.1
0b0xxxx Reserved encoding.

0b1nnnn Designates ssr identi�ed by
nnnn.

Not mandatory to be a valid operand for sa.setoplen /
sa.setopleni.

4.1.1. Assembly syntax

sa.setopleni.<n>.<m> rd, zimm5 
sa.setoplen.<n>.<m> rd, rs1

4.1.2. Semantics

If the systolic array does not support the operational length of the zimm5 operand (or the value in register rs1), then
sastatus.<n>.illoplen.<m> is set to 1 and saoplen.<n>.<m> is set to zero.

Otherwise sastatus.<N>.illoplen.<m> is set to 0 and saoplen.<n>.<m> is set to the XLEN zero-extended value of
zimm5 operand.

The determined value of saoplen.<n>.<m> is returned in register rd.

Note Decide if we want to provide a mechanism in which the SA allows the software to obtain a valid operational length.

4.2. Set Systolic Speci�c Registers

This is encoded using the SACFG format where rdest is x0 and sacsr is a value ranging 0b10000 to 0b11111. Both
SACFG.i and SACFG.r formats can be used. SACFG.i zero extends to XLEN its immediate operand.

4.2.1. Assembly syntax

sa.setssr.<n> <ssr-id>, zimm5 
sa.setssr.<n> <ssr-id>, rs1
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ssr-id is an immediate ranging from 0 to 15 that is encoded in the �eld sacsr as 0b10000 + ssr-id.

4.2.2. Semantics

If ssr-id is not a valid systolic-speci�c register for the systolic array <n> or rdest is not 0b00000 this instruction causes
an illegal instruction.

Otherwise the value designated by the operand in rs1 or the zero extended value to XLEN of zimm5 is set to the systolic-
speci�c register of <n> designated by ssr-id.

4.3. Memory accesses

Instruction sa.load<dim>.<n> is used to load data in memory to the systolic registers. This instruction is encoded using
the SAMEM.L format.

Instruction sa.store<dim>.<n> is used to store data in systolic arrays to memory. This instruction is encoded using the
SAMEM.S format.

4.3.1. Assembly syntax

sa.load1d0.<n>.<esize> sadest, (rs1) 
sa.load1d1.<n>.<esize> sadest, (rs1) 
sa.load2d0x1.<n>.<esize> sadest, (rs1) 
sa.store1d0.<n>.<esize> sasrc, (rs1) 
sa.store1d1.<n>.<esize> sasrc, (rs1) 
sa.store2d0x1.<n>.<esize> sasrc, (rs1)

4.3.2. Semantics

The amount of data transferred from/to memory is speci�ed by the <opdim> operand.

Table 4. opdim �eld encoding
Assembly opdim[1:0] Data transferred

1d0 0b00 saoplen.<n>.0 elements
1d1 0b01 saoplen.<n>.1 elements

2d0x1 0b10 saoplen.<n>.0 times saoplen.<n>.1
0b11 Reserved encoding. Unused.

sa.load<opdim>.<n>.<esize> transfers opdim times esize consecutive bytes starting from the address at rs1 into
consecutive elements (starting from element numbered 0) of register sadest.

sa.store<opdim>.<n>.<esize> transfers opdim consecutive number of elements of size esize bytes (starting from
element numbered 0) from register sasrc to consecutive memory addresses starting from address at rs1.

Table 5. esize �eld encoding
esize[1:0] Assembly Value (bytes) Description

0b00 e8 1 Elements of 8-bit
0b01 e16 2 Elements of 16-bit
0b10 e32 4 Elements of 32-bit
0b11 e64 8 Elements of 64-bit

Note A systolic array may require rs1 be an aligned memory address depending on the value of esize.

Note Not all the values of esize must be supported by a systolic array.
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esize value must allow opdim elements be representable in a systolic register otherwise the instruction yields illegal
instruction.

4.4. Generic operation

Instruction sa.op.<n> is used to trigger an operation of the systolic array.

4.4.1. Assembly syntax

sa.op11.<n>.<op> sadst1, sasrc1 
sa.op12.<n>.<op> sadst1, sasrc1, sasrc2 
sa.op13.<n>.<op> sadst1, sasrc1, sasrc2, sasrc3 
sa.op22.<n>.<op> sadst1, sadst2, sasrc1, sasrc2

The two forms exists to accomodate two inputs and two outputs and three inputs and one output operations.

When a systolic array register operand is not present in the instruction, its encoding is 0b11111.

Field nd encodes the numer of destination registers. 0b0 is one destination register and 0b1 encodes two destination
registers.

4.4.2. Semantics

The meaning of the operation <op> is implementation-de�ned by the systolic array <n>. The systolic array expresses the
operation in terms of the values of the different source operand registers and the values of saoplen.<n>.<m>.

Note Systolic-speci�c registers can participate as input operands of the operation.
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5. HEVC Imaging Accelerator

5.1. Identi�er

The systolic array identi�er for the HEVC Imaging Accelerator is 0.

5.2. Operations

op[1:0] Description
0b00 Computes something
0b01 Computes something else
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6. Neural Network Inference Accelerator

6.1. Identi�er

The systolic array identi�er for the Neural Network Inference Accelerator is 1.

6.2. Speci�c operations

op[1:0] Assembly Description
0b00 sa.op.1.noact sadst1, sasrc1, sarc2, sasrc3 No activation function.
0b01 sa.op.1.crelu sadst1, sasrc1, sarc2, sasrc3 Activation function is ReLU.
0b10 sa.op.1.htanh sadst1, sasrc1, sarc2, sasrc3 Activation function is hyperbolic tangent.
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