[/
e MEEP

| Q MareNostrum Experimental

" Exascale Platform

D5.3 - APPLICATIONS PORTED (FULL
SOFTWARE-STACK)

Version 1.0

Document Information

Contract Number

Project Website https://meep-project.eu

Contractual Deadline

Dissemination Level Public (PU)

Nature Report®
Authors Xavier Teruel (BSC), Roger Ferrer (BSC), Xavier Martorell (BSC), Jorge
Ejarque (BSC), Pere Verges (BSC), Julian Morillo (BSC), Manuel Ro-
drigues (BSC), Aaron Call (BSC).
Reviewers John D. Davis (BSC), Eduard Ayguadé (BSC).
, k. The MEEP project has received funding from the European High-Performance Computing Joint
. ! Undertaking under grant agreement No 946002. The JU receives support from the European Union
by s Horizon 2020 research and innovation programme and Spain, Croatia, Turkey.

© 2020 MEEP. The MareNostrum Experimental Exascale Platform. All rights reserved.

https://meep-project.eu

Change Log

v0.1 Xavier Teruel Initial draft structure.

v0.5 Various Authors Including contents for: compilers, containers, li-
braries, and offload-mode. Document structure
changes.

v0.7

v0.9 Various Authors Completing Operating System, Executive sum-
mary, Multi-devices, and Conclusions. Minor ed-
its.

“F:.'l" M E E MareNostrum Experimental D53 Vlo 2 / 91

Exascale Platform

COPYRIGHT
© Copyright by the MEEP consortium, 2020

This document contains material, which is the copyright of MEEP Consortium members and
the European Commission, and may not be reproduced or copied without permission, except
as mandated by the European Commission Grant Agreement no. 946002 for reviewing and
dissemination purposes.

ACKNOWLEDGEMENTS

The MEEP project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 946002. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme and Spain, Croatia, Turkey.

The partners in the project are BARCELONA SUPERCOMPUTING CENTER - CENTRO NACIONAL
DE SUPERCOMPUTACION (BSC), FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING,
UNIVERSITY OF ZAGREB (UNIZG-FER), & THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH
COUNCIL OF TURKEY, INFORMATICS AND INFORMATION SECURITY RESEARCH CENTER
(TUBITAK BILGEM).

The content of this document is the result of extensive discussions within the MEEP © Consortium
as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does not
necessarily represent the views expressed by the European Commission or its services. The
information contained in this document is provided by the copyright holders "as is” and any express
or implied warranties, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose are disclaimed. In no event shall the members of the MEEP
collaboration, including the copyright holders, or the European Commission be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages (including, but not limited to,
procurement of substitute goods or services; loss of use, data, or profits; or business interruption)
however caused and on any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of the information contained in this
document, even if advised of the possibility of such damage.

A '::'q" M E E MareNostrum Experimental D5.3v1.0 3 / 921

FrVLTY Exascale Platform

Index

1 Executive Summary 6
1.1 Operating System e 6
1.2 Compilersupport 6
1.3 Runtimesandlibraries 7
1.4 Containerization support. e 7
1.5 Benchmarkdescriptions e 8
1.6 Offload mode and multi-devices 8
1.7 Software distribution: releases 8

2 Introduction 10
2.1 Typeofreleases e e 10
2.2 Executionmodes e e 11

3 Operating System 12
3.1 Diriver for EthernetoverPCle 12

3.1.1 Integrating the ONIC driveronQDMA 12
3.1.2 Developing the RISC-V driver counterpart 13
3.2 Diriver for 10Gbit Ethernetover QSFP 13
3.3 Driver for 100Gbit Ethernetover QSFP 13

4 Compiler support 15
4.1 Infrastructure e e e e 15
4.2 RISC-V Vector Extension optimisations 15

421 Prefetching e 15
4.2.2 Loop transformations for temporal locality 16
4.3 Systolic Array e e e 18
4.4 Multi-devices support e e e 19

5 Runtimes and Libraries 20
5.1 Message PassinglInterface 20
52 OpenMPruntime e e 20
53 COMPSsruntime e e 20
5.4 TensorFlow Lite framework 21
5.5 Spark framework e e 22
56 BLISlibrary. e 22
5.7 NUMPY . . . o e e e 24

6 Container support 25
6.1 Enabling container support on ACME-EA 25
6.2 Working with distributed applications 25
6.3 Containerreleases e 26

7 Performance Analysis Methodology 27
7.1 Profiling support e 27

7.1.1 Extrae e e 27
7.1.2 libunwind e 29
7.1.3 Enabling hardwarecounters 30
Bl MEEP | o seemens D5.3vL0 4/ 9

7.2 POPMethodology
7.3 Vectormethodology
7.3.1 Validation with samplecodes

8 Benchmarks description

8.1 Systembenchmarks
8.1.1 Stream
8.1.2 EPCC-OpenMP
8.1.3 EPCC-OpenMP/MPI

82 HPCbenchmarks
8.21 RISC-VBenchmarks
822 HPL e
823 HPCG
824 FFTXlb
8.2.5 CloudMicrophysics
8.2.6 Advection-MPDATA

8.3 Data Analytics benchmarks
8.3.1 TensorFlowlLitemodels
8.3.2 Spark Epistasisusecase

8.4 Workflows benchmarks
8.4.1 DislibAlgorithms
8.4.2 Hyper-Dimensional Computing (HDC)

8.5 SystolicArraybenchmarks

9 The MEEP Offload Mode

9.1 Single-devicesupport
9.1.1 Compiler support for MEEP offload

9.1.2 Runtime support for MEEP offload

9.1.3 RISC-Vside offload support.
914 Testing
9.1.5 BLIS single-device approach
9.2 Multi-devicesupport o
9.2.1 OpenMPextensions
9.2.2 Compiler support for multi-devices
9.2.3 Middle-wareextensions
9.2.4 BLIS multi-deviceapproach
925 ImpactonOpenMP

10 Conclusions

10.1 Summaryofreleases

11 List of Acronyms
12 References

A Systolic Array Specification

AN (A (g M E E MareNostrum Experimental
au'y
FrVLTY Exascale Platform

74
77

80

5/ 91

1. Executive Summary

This document presents all the current releases of the MEEP Software Stack. It includes all the
levels involved in the toolchain as well as the target benchmarks we plan to evaluate at the end of
the project. As described in previous deliverables, the ACME EA platform can be used following
two different approaches: 1) A stand-alone processor/accelerator booting Linux (ie, self-hosted);
2) A supporting accelerator device attached to a host (ie, offloading). The document focuses on
the self-hosted mode, while we also explore the opportunities of the offload mode. When no
explicitly specified, the contents will refer to the self-hosted mode.

The Operating System, compiler, runtimes, and containerization support were already introduced
in deliverable D5.2 Linux with initial host interface release, based on the requirements document [33].
The set of benchmarks was also introduced in deliverable D5.1 Benchmark suite of HPC applica-
tions [32].

The integration of all these components aim to allow ACME EA programmers to exploit all the
system capabilities, being able to deploy their own use cases, and to obtain useful information
to infer the performance behaviour. As described in the Description of Action (DoA): "all the
application that have been identifed are ported to run on top of the emulation platform”; and for each
application’s entry we also describe the metric of interest and its evaluation methodology (from
DoA: "The final phase will focus on application performance evaluation and debugging”).

Following sections present a brief summary of the status of these components at the current
stage of the project.

11. Operating System

The Operating System presents the updates on the support for communication with the driver
for Ethernet over PCle and the driver for Ethernet over QSFP. The PCle uses the Xilinx QDMA
driver and the Xilinx Open NIC driver, both deployed on the host side; and the Xilinx Linux kernel,
on the RISC-V side. The QSFP driver allows FPGA to FPGA communication and it has been
implemented based on the driver developed in the EPI project, with a DMA-based solution and
the ability of scatter-gather.

1.2. Compiler support

The compiler includes the contribution to the RISC-V Vector Extensions, which target the VPU
accelerator and the Systolic Array extensions. With respect to the Vector Extension we have
explored to main lines: one based on assessing whether prefetching techniques are feasible to
inform the CPU about memory accesses of the vector code and another one exploiting loop
transformations to improve the use of the vector registers. Although prefetching hints looked like
to be a reasonable mechanism to convey memory accesses (specifically about the vector length)
information to the vector processor, the results obtained from our implementation suggest this is
not an effective way to inform the CPU about the memory characteristics of vectorised code.
The loop transformation techiques are still on development and we aim to impact on the locality

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 6 / 21

LA ALY Exascale Platform

https://release.meep-project.eu

characteristics of the computational kernels.

The Systolic Array extensions present a set of new custom instructions targeting the Systolic Array
accelerators. It includes a set of new registers, and new computational and memory operations.

Both extensions have been implemented in the LLVM compiler and distributed as a source code
repository as well as a RPM Fedora package. The compiler distribution also includes the OpenMP
runtime library used to provide parallelization services to the OpenMP applications.

1.3. Runtimes and libraries

The Linux distribution includes several libraries to complete the HPC-AIl ecosystem: the MPICH
MPI library, the COMPSs/PyCOMPSs workflows, the TensorFlow Lite and Apache Spark frame-
works, and the BLIS and NumPy libraries. All of them available as Fedora installable packages.

COMPSs [30] is a task-based programming model and runtime system to implement parallel
distributed workflows. Supported applications are executed in a master-worker mode, where the
workflow is executed in the master process and the tasks are executed in the worker processes.

Apache Spark [11] is an open-source unified analytics engine for large-scale data processing. It
provides an interface for programming cluster with implicit data parallelism and fault tolerance.

Either COMPSs or Apache Spark relies on top of the Java Virtual Machine (JVM), consequently
we have also included this component as part of the software stack.

TensorFlow [9] is a free and open-source software library for Machine Learning (ML) and Artificial
Intenlligence (Al) applications. TensorFlow Lite [12] provides the inference engine and it is
designed focusing on edge environments.

BLIS [38] is the linear algebra library we recommend in the MEEP ecosystem. We have adapted
it in order to exploit the vector capabilities of the system by extending the OpenMP annotation
to also target SIMD directives. We also put forward an exploration of this library with an offload
mechanism to execute BLIS services in environments that are characterized with one or multiple
accelerators.

NumPy [35] is a Python package that has support for scientfic computing. It provides sup-
port for different multidimensional objects, and mathematical functions. NumPy leverages the
optimizations implemented in the aforementioned custom BLIS library.

1.4. Containerization support

With respect to the containerization support, we have selected three container engines to validate
our work: Moby, Podman and Singularity. Moby is the open source version of the Docker stack,
which is the most popular container engine nowadays. Podman, also very popular, because it has
a compatible interface with Docker. Finally, Singularity is the most popular container engine in
the HPC field because it allows traditional HPC resource managers and devices.

A '::'q" M E E MareNostrum Experimental D5.3v1.0 7 / 921

FrVLTY Exascale Platform

1.5. Benchmark descriptions

We also layout a set of benchmarks that are used to analyse their behaviour on the available
MEEP environments. These benchmarks range from system benchmarks, such as Stream, EPCC-
OpenMP and EPCC-OpenMP/MPI to common HPC benchmarks: HPL, HPCG, FFTXLIB, Cloud-
Microphysics and Advection-MPDATA [32].

In the Data Analytics side, we include the TensorFlow Lite models, which are a set of Neural
Networks (NN) representative of the current Data Analytics architectures. Among the set of
models we found: MNIST, VGG-19, NesNet50, and MobileNet. Besides the TensorFlow models
we also evaluate the Epistasis application running on top of the Apache Spark framework. The
application can be configured by means of different parameters which allow to run vectorial and
non-vectorial code, change the number of nodes, the problem size (and its internal partitions),
etc.

In the Workflow benchmarking side, we have two different workloads. One based on the
Distributed Computing Library (Dislib), another based on the Hyperdimensional Computing
framework. Both use cases leverages the COMPSs/PyCOMPSs runtime and will allow to test the
behaviour of this kind of applications using the MEEP architectures.

1.6. Offload mode and multi-devices

This section refers to the offload mode.

We have implemented a prototype infrastructure supporting OpenMP offload between the
Intel Host, acting as the application runner, and the RISC-V on the FPGA, acting as the device
accelerator. Thus, the LLVM compiler is invoked to generate x86_64 code for the Host and
RISC-V rvé4imafdc code for the accelerator (i.e. the target regions).

The support for OpenMP target on the Host side is implemented as a plugin to the libomptarget
library. In our case, we have adapted the plugin developed by FORTH in the EPI project to work
with the RISC-V accelerator on the FPGA.

One of the possible scenarios considered earlier in the MEEP project was that a single node could
offer many accelerators where work could be offloadd to. This led us to identify a gap in OpenMP
support for offloading. Aligned to this, we have proposed an extension to OpenMP in which we
introduce a new OpenMP construct called target spread. Instead of receiving a single device
clause, the spread construct has a devices clause which represents the set of devices that will
execute the offloaded region.

1.7. Software distribution: releases

One important aspect of the current software reporting period is to make all the software stack
publicly available for downloading by means of releases. In the MEEP project the OS will be
distributed as binary images which can be installed on the development board.

Once the users have a booting Operating System running on the ACME EA platform, they will be

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 8 / 21

LA ALY Exascale Platform

able to use other software components by means of three different types of releases: 1) Source
code repositories; 2) RPMs packages; and 3) Containerized images.

D5.3v1.0 9 / 91

MareNostrum Experimental

v |
WA MEE
) Exascale Platform

2. Introduction

This document presents all the initial releases of the Software Stack components for the MareNos-
trum Experimental Exascale Platform (MEEP). It includes all the levels involved in the toolchain
(i.e., the Operating System, the compiler, and containerization support); as well as the applications,
benchmarks and kernels we plan to evaluate at the end of the project (i.e., system, HPC, Data
Analytics, and workflows).

The Operating System, compiler and containerizaton support were already introduced in deliv-
erable D5.2 Linux with initial host interface release, based on the requirements document. In this
document we will report the status at this stage of the project.

The set of benchmarks was already introduced in deliverable D5.1 Benchmark suite of HPC
applications. In this document we will establish the objectives we plan to reach using them
in the MEEP Project (i.e., performance evaluation or co-design with hardware/compiler). Also,
for each of the componets targeting the performance evaluation, we will describe the set of
metrics we want to acquire and which specific aspect of performance we want to test: memory,
compute, multi-thread, multi-process, or vectorial will be the most meaningful ones. We will
finally report any modification/porting we have introduced in these codes in order to adapt them
for the purposes of the study or the execution on the ACME platforms.

2.1. Type of releases

One important aspect of the current software reporting period is to make all the software stack
publicly available for downloading. This deliverable will describe, for each of the presented
software items, how they will be released.

The most important element on the Software Stack is the Operating System. It includes the OSBI
and the File System based in the Fedora distribution. In the MEEP project they will be available as
binary images which can be installed on the development board. The released OS will also contain
the fundamental packages recommended to work on top of the ACME EA platform. These files
can be found on the MEEP OS Layer, which also describes how these files can be installed.

Once the users have a booting Operating System running on the ACME EA platform, they will be
able to use other software components by means of three different types of releases:

e Source code repositories: from where users may download the code and build it in their
own platform.

e RPMs packages: that users may install or update from the repository sourced in their OS
Fedora distribution.

e Dockerimages: that users may execute to use specific pre-configured software components
(eg, TF Lite).

A '::'q" M E E MareNostrum Experimental D5.3v1.0 10 / 921

FrVLTY Exascale Platform

https://release.meep-project.eu
https://release.meep-project.eu/os-layer.html

IEF_

':S]I:';lE EA ﬁgEE EA ::‘_E’I‘:'SE EA Host ACME EA ACME EA I
ACME EA: as a RISC-V self-hosted accelerator. ACME EA: as a RISC-V accelerator attached to a host.

Figure 1: MEEP Execution Modes: self-hosted vs offload.
2.2. Execution modes

The ACME EA platform can be used following two different approaches (see D5.2 Linux with initial
host interface release, based on the requirements document; Section 2.2):

1. Astand-alone processor/accelerator booting Linux (ie, self-hosted). In this execution mode,
the ACME EA becomes part of the HPC cluster;

2. A supporting accelerator device attached to a host. In this case the host becomes part of
the HPC cluster, and it offloads parts of the computation to the ACME EA device.

Figure 1 illustrates these two approaches and how the HPC cluster is organized around the ACME
EA computational system. As described in the previous deliverable, the main objective of the
MEEP project is to target the self-hosted accelerator but it will also explore the offload execution
mode and the opportunities this approach enables.

The rest of this document is organized as follows: Sections 3 to 8 refer to the self-hosted mode
(ie, Operating System, Compiler, Runtimes/Libraries, Containerization support, Performance
methodology, and Benchmarking), Section 9 describes all the components related with the MEEP
offload-mode, and Section 10 presents the conclusions and summarizes all the software releases.

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 11 / 91

LA ALY Exascale Platform

3. Operating System

The information about the Operating System has been already presented in MEEP Deliverable
D5.2: Linux with initial host interface release, based on the requirements document [33]:

e Linux kernel boot and the boot flow process for ACME
e The Buildroot, Debian and Fedora portings
e The ACME memory map, Pmem disk, and Tun-on-Map basic networking

In this deliverable we present the updates on the support for communications with the driver
for Ethernet over PCle and the driver for 10/100Gbit Etherner over QSFP. More details of the
Ethernet implementation can be found on Section 3 of the MEEP Deliverable D6.3: Emulated
accelerator second release with full capacity of inter-accelerator communication [34].

31. Diriver for Ethernet over PCle

The FPGA infrastructure for ACME includes the IP dealing with the QDMA transactions. This
infrastructure was initially only used to transfer the operating system and the filesystem im-
age to the board. Later on, we used it from the user-level to implement the Tun-on-mmap
communications, allowing a first implementation of Ethernet over PCle.

The next development has been to move that communications infrastructure inside the kernel.
This has been done in both sides, the host and the RISC-V. In order to do this, we used the
following platforms:

¢ [Host side] The Xilinx QDMA driver source code (obtained from Xilinx DMA [P Drivers repo)

e [Host side] The Xilinx Open NIC driver source code (obtained from Xilinx Open NIC Driver
repo)

e [RISC-V side] The Xilinx Linux kernel source code (obtained from Xilinx Linux repo)

On the FPGA infrastructure we have included a memory area in the I/O space that provides
a non-cachable zone for data exchange between the QDMA driver on the host side, and the
RISC-V. This infrastructure is described in Section 4.1 of the MEEP Deliverable D6.3: Emulated
accelerator second release with full capacity of inter-accelerator communication [34].

314. Integrating the ONIC driver on QDMA

On the host side, we have taken advantage of Xilinx publishing the Open NIC driver, to use it as
the basic structure to incorporate it on the QDMA driver. The new QDMA driver infrastructure
developed in the MEEP project includes the support for Ethernet over PCle.

In order to implement this new feature inside the QDMA driver, we have incorporated parts of
the Open NIC driver, specifically:

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 12 / 21

LA ALY Exascale Platform

https://github.com/Xilinx/dma_ip_drivers
https://github.com/Xilinx/open-nic-driver
https://github.com/Xilinx/open-nic-driver
https://github.com/Xilinx/linux-xlnx

e The creation of the Ethernet device.
e Enabling the DMA transfers of data from/to the kernel-mapped memory.
e The implementation of the Tun-on-mmap protocol from inside the kernel.

This code is available in the MEEP QDMA driver in this repository: MEEP QDMA+ONIC driver.

31.2. Developing the RISC-V driver counterpart

The RISC-V driver counterpart has been implemented based on the Xilinx Open NIC source code,
by replacing the access to the DMA system to the use of the shared memory area in I/O space.

Being fully in the I/O space we ensure that the memory accesses from the host side through
the QDMA+ONIC driver and the RISC-V accesses through the in-kernel /dev/mem device are
coherent, and there are no cache-related issues.

This code has been incorporated in the Xilinx Linux version on the MEEP Lagarto Openpiton SDK
repository.

3.2. Driver for 10Gbit Ethernet over QSFP

Providing Ethernet on the QSFP connection involves the RISC-V system running on the FPGA,
that will be connected to another FPGA board in a point-to-point connection, or to a local switch.

The driver running on Linux on the RISC-V side has been implemented based on the driver
developed in the EPI project, with a DMA-based solution and ability for scatter-gather. The driver
accesses 2 types of data. On the one side, it uses DMA descriptors mapped onto non-cachable
memory, ensuring that the DMA engine works properly.

On the other side, the driver receives and interacts with data buffers from the Linux kernel, on
regular cacheble memory. As the Openpiton infrastructure is not providing cache flushing for
coherency with memory accesses coming from the DMA engine, we have implemented a simple
memory filling routine to try to flush the cache of previously accessed data. This solution is used
right before setting the DMA up for transfering a packet, and it provides a temporary solution
while we find another option to use.

This code is available in the MEEP Lagarto Openpiton SDK repository.

The Ethernet IP for the QSFP connection is described in Section 4.2 of the MEEP Deliverable D6.3:
Emulated accelerator second release with full capacity of inter-accelerator communication [34].

3.3. Driver for 100Gbit Ethernet over QSFP

We have recently verified that the same driver that we use for 10Gbit Ethernet will support
100Gbit Ethernet communications. The only difference is that the 100Gbit IP hardware requires

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 13 / 21

LA ALY Exascale Platform

https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/xilinx_pcie_drivers
https://gitlab.bsc.es/meep/meep-os/lagarto-openpiton-sdk
https://gitlab.bsc.es/meep/meep-os/lagarto-openpiton-sdk

an additional initialization that will be implemented in the 10Gbit Ethernet driver, allowing

100Gbit transfers.

D5.3v1.0 14 / 91

MareNostrum Experimental

V]
A MEE
y Exascale Platform

4. Compiler support

This section describes all the development carried out during the MEEP project aimed at support-
ing the MEEP architecture. This work includes contributions for the RISC-V Vector Extension,
which targets the VPU accelerator component of MEEP, and the Systolic Array extensions. This
work is mainly based on the LLVM infrastructure.

41. Infrastructure

The LLVM Project is a collection of modular and reusable compiler and toolchain technologies
under open source permissive licences. The most commonly known components of LLVM are
the Core libraries (commonly known as LLVM) and the Clang C/C++ front end.

LLVM is based around the idea of a common intermediate representation called LLVM IR. This
representation is powerful enough to cover a larger number of analyses and transformations that
can be reused among different architectures. As a practical compiler, though, LLVM includes
other representations that are used in specific parts of the compilation process. Clang has its own
AST (Abstract Syntax Tree), the Codegen library of LLVM Core uses a low level representation
called Machine IR, and the MC library of LLVM Core uses an even lower-level representation for
encoding (assembly) and decoding (disassembly) instructions.

The work done on MEEP is built on top of the compiler developed in EPI SGA-1 which was
extended in that project to support the RISC-V Vector Extension version 0.7.1 as implemented
by the microarchitecture of the Vector Processor.

4.2. RISC-V Vector Extension optimisations

This section describes contributions that were done in the MEEP project with the goal to improve
the code generation and the applicability of the RISC-V Vector Extension.

4.21. Prefetching

The RISC-V Vector Extension has been designed so it can adapt many implementation scenarios.
This led to a design that is vector-length agnostic: the ISA does not prescribe a specific size for
the vector registers. At the same time it provides enough functionality so it is possible to use the
same sequence of vector instructions in implementations with different physical vector length.

An outcome of the work developed in the EPI project was a loop vectorisation strategy that
is fully vector length agnostic. The compiler emits a vectorised loop that requests the CPU to
process, using vector instructions, as many elements as the remaining iterations. This is called
the application vector length. The CPU returns the available vector length it can honour based on
the specific vector register size of the implementation.

The RISC-V Vector Extension defines what values the vector length returns but the code emitted

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 15 / 21

LA ALY Exascale Platform

Application Cycles NP Cycles P ACycles (%) #lnsns NP #Insn. P A#lnsns (%) R Miss NP R Miss P Delta R Miss (%)

Blackscholes 35709 35077 -1.77% 71109 72237 1.59% 251 243 -3.19%
Somier 49101 48920 -0.37% 73472 73536 0.09% 373 301 -19.30%
SpMV 4727 5359 13.37% 3516 3672 4.44% 172 183 6.40%
Matmul 3115 3364 7.99% 905 1040 14.92% 96 106 10.42%

Table 1: Results without prefetch (NP) and compiler introduced prefetch (P).

by the compiler is fully agnostic. So a plausible scenario for an architecture that extends the
RISC-V Vector Extension is to further this idea and let the CPU choose the vector length it deems
ideal for a given iteration. As a way to communicate to the CPU what memory is going to be used
by a loop, we looked at prefetch instructions, which in addition to do prefetch by themselves (of
a future memory access). Not that the instructions are used in this context as hints to the CPU
and not necessarily as a mechanism to enforce the memory prefetch.

The RISC-V community proposed a new set of instruction extensions called the RISC-V Base
Cache Management Operations ISA Extensions (Zcmo). For the purpose of this exploration we
only implemented support for the prefetch.r instruction in the compiler. We then modified
LLVM so the IR intrinsic 11vm. prefetch could emit this instruction. For the purpose of evaluation
we modified the Coyote emulator so it could recognize the instruction and emulate a prefetch
from the cache.

Then we implemented a simplified version of the approach described in [13] so the compiler
inserted 11vm.prefetch in loops containing set vector length instructions and memory references.
This was evaluated against a small set of benchmarks to assess the feasibility of the technique.

The results are summarised in Table 1 and they yield mixed, inconclusive, results. All of them
expose, expectedly, extra instructions executed, even if moderately like in the case of the Somier
application. Some applications show a small improvement in number of cycles, which suggests
their performance improves while others show a medium increase in cycles. The variations of
the cycles correlates with the change of read misses (“R Miss” column) although this correlation
is not totally clear. For instance, Somier reports a relatively large reduction of read misses but
those do not translate into a much more improved performance, specially given that the number
of extra instructions in the prefetch version is small.

It seems reasonable to conclude that the software prefetching mechanism based on the evaluated
software prefetching algorithms, might not be the most suitable way to convey memory access
information from software to the hardware.

4.2.2. Loop transformations for temporal locality

MEEP architecture features a vector ISA that provides a large (32) number of registers. Tradi-
tionally, to keep the functional units busy, applications need to make sure the register pressure
is high while reducing the memory accesses. Minimising the number of memory accesses and
trying to maximise the register utilisation is a similar problem to exploit temporal locality as much
as possible.

Loop transformations are known to be able to dramatically impact the locality characteristics of
computational kernels. We want to see if the application of these techniques is also useful to
minimise memory accesses.

A '::'q" M E E MareNostrum Experimental D5.3v1.0 16 / 921

FrVLTY Exascale Platform

We used the Somier application as a case study. It simulates a 3D grid of of springs (like a three
dimensional box spring). For each time step, using the position of the nodes, elastic forces are
computed, then accelerations, velocities and then the new positions. The three magnitudes,
position, forces, acceleration and velocities, are stored independently, and computed, for each
node, one after the other. Listing 1 is a high level description of the simulation run by Somier.
foreach (t : timestamp) {
foreach (p : nodes) {
forces[p] <- compute_forces(position[p])
}
foreach (p: nodes) {
accels[p] <- compute_accelerations(forces([p])
}
foreach (p: nodes) {
velocs [p] <- compute_velocities(accels[p], t)
}
foreach (p: nodes) {
positions[p] <- compute_positions(velocs[p], t)

3

Listing 1: High-level scheme of the simulation implemented in Somier

Before implementing them in the compiler, we wanted to determine if the loop transformations
would be favourable. Because the nodes are laid out in a 3D grid, each loop for nodes in Listing 1
is actually a 3-nested loop. The first thing we did was to linearise the three loops, called loop
flattening, into a single loop that traverses all the nodes. Then we applied loop fusion. So we
ended with a scheme like in Listing 2.
foreach (t : timestamp) {
foreach (p : nodes) {
forces[p] <- compute_forces(position[p])
accels[p] <- compute_accelerations(forces([p])

velocs [p] <- compute_velocities(accels[p]l, t)
positions[p] <- compute_positions(velocs[p]l, t)

Listing 2: Somier high level scheme, after loop fusion

After this change, though, the code is still using memory accesses to store and then load later.
This exposes temporal locality so the cache can resolve these accesses. But we would like to
avoid involving the memory system here. So we implemented a pass in the compiler that can
remove those clearly redundant memory accesses.

Listing 3 shows the final loop. Figure 2 shows the reduction of loads in each iteration visible in a
trace generated by vehave, a trap-based emulator developed in the EPI-SGA1 project. The trace
shoes we are able to remove 6 of the vector loads (v1e64) in every iteration.

foreach (t : timestamp) {
foreach (p : nodes) {

reg_forces := compute_forces(position[p])
forces[p] <- reg_forces

reg_accels := compute_accelerations(reg_forces)
accels[p] <- reg_accels

reg_velocs := compute_velocities(reg_accels, t)

velocs [p] <- reg_velocs
positions[p] <- compute_positions(reg_velocs, t)

LN :: MareNostrum Experimental D53 v10 / 91

- 1' \ Exascale Platform

Listing 3: Somier high level scheme, with reduced load accesses

N |-|-|- FF'FF EEPEEE R FFFIFIFFFFFF N { FFFFFIFF rEF R E . E e = "= B oF o F
vehave I . I . I vehave I I I I I I
61,385 ns 61,424 ns ns 61,412 ns

What / Where | Timing | Colors What / Where | Timing | Colors
. vimaccw . vimaccw

B vimulyi B vimulyi

. vimvovf . vimvovf

vle6d.v vle6d.v

Figure 2: At the left, the original loop in Listing 2. At the right the loop in Listing 3.

4.3. Systolic Array

The MEEP architecture includes in its design two systolic arrays that act as accelerators. However,
rather than presenting the accelerators like compute engines that must be accessed via 1/0,
MEEP chooses the path of integrating them in the ISA.

For this purpose we had to extend the RISC-V ISA with custom instructions that would allow
operating the systolic array. This extension has been designed with some degree of flexibility in
mind and it is inspired in some way by the RISC-V Vector Extension

e The ISA provides a set of 32 systolic array registers per systolic array.

e Operations use the systolic array register as explicit operands of the systolic array instruc-
tions.

e The ISA defines two operational lengths.

e Systolic array operations, including memory accesses, receive the operational lengths as
implicit operands.

e The ISA defines a generic operation that each Systolic Array maps to the implemented
function.

We implemented this extension in the LLVM compiler as assembly and disassembly support for
the new instructions and systolic registers introduced. This required extending the MC layer of
LLVM, whose task is to assemble (encode) and disassemble (decode instructions). Given the low
level nature of the work carried out by the systolic arrays, there is no plan to implement a C/C++
intrinsic interface for this extension.

Refer to the Appendix A for a description of the current specification of this extension as imple-
mented by the compiler

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 18 / 21

LA ALY Exascale Platform

4.4. Multi-devices support

The multi-devices proposal, described in more detail in Section 9.2.1, was implemented in the
clang C/C++ front-end of LLVM. Some minimal changes were also needed in the OpenMP runtime
of OpenMP. The implementation is available at MEEP Compilers repository.

.‘,‘l,: ,:l‘l L4 M E E MareNostrum Experimental D53 Vlo 19 / 21

Exascale Platform

https://gitlab.bsc.es/meep/meep-compilers/llvm-mono/-/tree/meep-target-spread

5. Runtimes and Libraries

In this section we present the additional packages, included in the Linux distribution, to com-
plete the HPC-AI ecosystem: the MPICH MPI library, the COMPSs/PyCOMPSs workflows, the
TensorFlow Lite and Apache Spark frameworks, and the BLIS and NumPy libraries. All of them
available as Fedora installable packages.

51. Message Passing Interface

The Fedora 33 distribution comes with the MPICH MPI library as an installable package. MPICH
is version 3.3.2. We install the package by default when generating the Fedora filesystem image.

We tested the MPI implementation with the HPCC - HPC Challenge benchmark, version 1.5.0.
The benchmark has been run with 1, 2 and 4 cores on a single Ariane-based node and we found
no issues while running this MPI application.

Running MPI is achieved with the command: mpirun -iface lo -np 2 <application-binary> <appli-
cation arguments>

The MPI runtime is available at MEEP Runtimes webpage

5.2. OpenMP runtime

The OpenMP support was added through LLVM. The LLVM compiler and OpenMP support library
(libomp.so) were imported from the EPI project.

The LLVM compiler allows to run OpenMP applications in the host server (Intel-based), and the
RISC-V on the FPGA. On the RISC-V, we have run the STREAM benchmark to test the OpenMP
support.

Additionally, we have implemented a prototype version of the OpenMP offload to allow the Intel
host to spawn parallelism onto the RISC-V cores. This implementation is presented in section 9.

5.3. COMPSs runtime

In this section, we present how the COMPSs runtime has been ported to support ACME EA
platforms. COMPSs is a task-based programming model and runtime system to implement
parallel distributed workflows. Despite the core of the COMPSs runtime is written in Java it
also offers bindings for C++ and Python (PyCOMPSs). These bindings interact with the runtime
using Java Native Interface. COMPs/PyCOMPSs workflows are executed in a master-worker
mode, where the workflow is executed in a master process and the tasks are executed in the
worker processes which can be spawned in the same or different computing nodes. The spawn
of the processes is performed by Secure Shell and the communication between master and
worker nodes are performed by TCP/IP. The COMPSs runtime is integrated with Extrae in order

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 20 / 21

LA ALY Exascale Platform

https://release.meep-project.eu/toolchain.html#hpc-runtimes

to generate execution traces for performance analysis.

To enable the execution of COMPSs/PyCOMPSs application in the ACME EA prototype, the
following main dependencies must be supported in the RISC-V 64 bits architecture and the ACME
EA has to support profiling with Extrae and networking through TCP/IP protocol. The details
about how the networking has been provided in the ACME EA prototype is explained in Section 3,
and the profiling support in ACME EA is explained in Section 7.1 Regarding the first topic, the
Python interpreter and the Secure Shell client and servers are available in the base Fedora 33
distribution, but the problematic dependency in this case was the Java support.

At the beginning of the Project COMPSs was requiring Java 8, however there is not a Java Virtual
Machine (JVM) version 8 working for a RISC-V 64 bit architecture. In the Fedora distribution, we
found a limited JVM for version 11. It is a ZeroVM implementation which does not include all the
features and with limited performance because it do not include the Just-In-Time compiler. In
the OpenJDk community there is a project for porting the full OpenJDK JVM for RISC-V 64 bits
architecture which was starting in Java version 14. So, the main effort to port COMPSs to the
ACME EA platform and other RISC-V architectures was devoted to support newer Java versions.
It was a tedious task because there was a major change in the Java releases since version 9.
Java EE and some other features included in the Java distribution where removed and ported
to external projects, and the organization of the JVM libraries has also changed affecting the C
and Python bindings. All these changes where initially ported to COMPSs version 2.10.1 and
consolidated in version 3.0 and 3.1.

Source code of the COMPSs runtime including RISC-V 64 bits support can be found in COMPSs
github repository and the RPM packages can be found in the MEEP RPM repository.

5.4. TensorFlow Lite framework

In this section we present how we ported the TensorFlow Lite runtime to make it work on Sifive
HiFive Unmatched board and ACME-EA platforms successfully. TensorFlow Lite can be build
either with bazel - which currently does not have support for RISC-V - or with CMake. Bazel was
preferred as it is the main build system for the TensorFlow community. However it did not have
support for RISC-V. Support was planned and some proposals to enable it were publicly made.
We spend some effort on attempting to enable support following the suggested guidelines but
eventually we found it was taking too long and switched to CMake.

To port TensorFlow lite we have first modified the basic build scripts to activate the following
flags on GCC compiler: ARMCC_FLAGS =" — funsafe — math — optimizations" and add
the following options to the cmake command line: -DCMAKE_SYSTEM_NAME=Linux -DCMAKE_-
SYSTEM_PROCESSOR=riscv64 -DTFLITE_ENABLE_XNNPACK=ON.

The default CMake target builds a C library, so it was only possible to run benchmarks based
on C. But our benchmarks were written in python. So we had to also compile and install a
pip package for python. To build tensorflow lite as a pip package we have added the riscv64
option on the script tensorflow/tensorflow/lite/tools/pip_package/build_pip_package_with_cmake.sh.
The modification consists on adding a switch case for riscv64 and correctly setting the variable
WHEEL_PLATFORM_NAME to riscvé4.

Most of the effort was devoted to finding the combination of flags that worked adequately. As

A '::'q" M E E MareNostrum Experimental D5.3v1.0 21 / 921

FrVLTY Exascale Platform

https://github.com/bsc-wdc/compss
https://github.com/bsc-wdc/compss
https://release.meep-project.eu/nexus/#browse/search/yum=attributes.yum.name%3Dpycompss

it happened enabling some flags avoided some compilation errors however induced errors in
other pieces of the software stack. After investigations we found out the combination of flags
and operating system packages that needed to be installed so the runtime compiled successfully.
Thus, additionally we need to install the following packages on the operating system:

e pytind11. It is needed to set appropriately the INCLUDE_P AT H environment variable.
e python3-dev

e libboost-all-dev

e glibc2.33

TensorFlow Lite is offered as a RPM package containing the runtime with the modifications made
on MEEP context. It can be found at: MEEP Toolchain webpage

5.5. Spark framework

Spark heavily relies on JVM for its core and encountered the same problems regarding the
Java requirements in COMPSs. Once that was solved and java runtime was enabled no more
modifications were needed to make Spark runtime work on MEEP systems. Spark is released as a
RPM package containing the runtime and can be found at MEEP Toolchain webpage.

5.6. BLIS library

BLIS stands for BLAS-like Library Instantiation Software [38] and is the library employed to
give applications the linear algebra functionalities that they required. In the context of the
MEEP project, we explored BLIS in two different versions: Self-hosted and Offload (for more
information on MEEP execution modes, we refer the reader to deliverable D5.2, MEEP execution
modes section). Moreover, we provide the BLIS Self-hosted version to users, however the BLIS
offload version was targeted only as an exploration task, hence, there is no BLIS offload release.
The description/results of this exploration can be found at Section The MEEP offload-mode,
sub-sections BLIS single-device approach and BLIS multi-device approach.

Description

The BLIS self-hosted version provides and explores the capabilities of executing this library
natively in the accelerator. Here, we focus on two major features: 1) parallelism offered by
the OpenMP programming model and also 2) the capabilities of the compiler to issue vector
instructions when encountering SIMD directives.

Regarding the first feature, we are relying in the infrastructure already present and that applies the
OpenMP programming model for exploring the parallelism capabilities of the platform. Some of
the BLAS levels offered by BLIS do not leverage the multi-thread capabilities present in the library.
For instance, level 1 BLAS routines (vector addition, axpy among others) lack this capability. On
the other hand, level 3 BLAS routines, such as matrix multiplication, take advantage of this feature
and performance improvements can be seen.

A '::'q" M E E MareNostrum Experimental D5.3v1.0 22 / 921

FrVLTY Exascale Platform

https://release.meep-project.eu/toolchain.html#da-runtimes-tflite
https://release.meep-project.eu/toolchain.html#da-runtimes-spark

For OpenMP SIMD directives, BLIS also renders this capability, provided that, during the configu-
ration phase, BLIS is able to detect that the compiler supports this directive. Unfortunately, BLIS
is not always able to detect this feature, and for this reason we are modifying the implementation
and explicitly add simd directives.

Modifications

As previously mentioned, instead of relying on this BLIS verification mechanism, we modified the
source code to explicitly try to vectorize certain parts of the code if the compiler is able to. To
highlight the nature of these modifications, check the next example.

Original source code:

VA
PRAGMA_SIMD \
for (dim_t i = 0; i < mn; ++i) \
{\
PASTEMAC (ch,addjs) (chil[il, psii[il); \
A\
VA

Modified source code:
/..

_Pragma ("ompysimd") \
for (dim_t i = 0; i < n; ++i) \
{\
PASTEMAC (ch,addjs) (chil[il], psii[i]); \
A
VA

Library version and configurations

The version of this library used in MEEP is based on BLIS version 0.9.0, commit 4603324 [21].
Interestingly, the BLIS library provides a set of configurations that implement optimizations for a
specific set of platforms. However, we cannot take advantage of these optimizations because
there is no configuration for RISC-V platforms. For this reason, we have to rely on the generic
configuration that uses the set of generic kernels and do not have optimizations in place that we
can take advantage of.

In MEEP we explore and test this library in a large set of computing platforms with different
features and behaviours. For this reason, we provide and maintain a BLIS version per platform
because each one might need a different type of configuration. To this end, in the MEEP repository
for BLIS, we have a branch for each of the necessary configurations and platforms. This allows
to rapidly modify, adapt and deploy a particular version if we find a problem or improvement.
On the down side, we pay the price of having a large set of versions (branches) that need to be
maintained.

Last but not least, BLIS is available to users in two different flavours:
e BLIS source code per platform;
e BLIS RPM package: RPM packages for ACME-EA releases.

All of these releases are available at MEEP Toolchain webpage.

A '::'q" M E E MareNostrum Experimental D5.3v1.0 23 / 921

- 1' W Exascale Platform

https://release.meep-project.eu/toolchain.html#hpc-libraries-blis

5.7. Numpy

Numpy is a Python package that has support for scientific computing. It provides efficient
support for different multidimensional arrays, and mathematical functions. In order to get benefit
of Numpy in the MEEP prototype we have to enable this python package to work with the
custom BLIS library. Numpy uses the BLAS and LAPACK interfaces to access to the efficient
implementation of multidimensional array sand linear algebra functions. To enable Numpy to run
with the MEEP BLIS library, it has been installed from sources which can be found in the Numpy
Github repository.

Before compiling Numpy, we have to enable LAPACK to use the MEEP BLIS library. We can
compile one of the LAPACK implementations from source code linking it with the MEEP BLIS
library. In our case, we have used the LAPACK reference implementation which can be found
in the LAPACK github repository. To indicate the location of the BLAS library used in LAPACK
you have to modify the make.inc setting the MEEP BLIS library path in the variable BLASLIB (eg.
BLASLIB = /apps/riscv/ubuntu/blis/lib/libblis.so). Then you just need to follow the normal cmake
installation.

Once we have LAPACK compiled with BLIS, we need to indicate the location of the LAPACK
libraries and the BLIS library to the Numpy installation configuration. First, we had to edit the
cite.cfg and set the BLIS library path at the [blis] tag. Once the path has been set, we have to
compile Numpy specifying the location of the LAPACK in the LAPACK variable before executing
the installation command. An installation command example can be found below.

LAPACK=/home/user/.local/lapack/liblapack.so ATLAS=None CFLAGS='-03'\
python3 setup.py install --user.

A '::'q" M E E MareNostrum Experimental D5.3v1.0 24 / 921

FrVLTY Exascale Platform

https://github.com/numpy/numpy
https://github.com/numpy/numpy
https://github.com/Reference-LAPACK/lapack/

6. Container support

In this section, we present the work performed to allow the execution of containers in the ACME-
EA platforms. We have selected three container engines to validate our work: Moby, Podman
and Singularity. Moby is the open source version of the Docker stack which is the most popular
container engine. Podman is also a very popular engine because has a compatible interface with
Docker but with a simplified execution in rootless mode. Finally, Singularity is the most popular
container engine in the HPC world because it easily works with traditional resource managers
and devices

6.1. Enabling container support on ACME-EA

The work for enabling the container support for the ACME-EA platform is organized in two main
tasks: one for testing and enabling the container engine software; and another to test and enable
the required kernel modules are available in the system and properly configured.

Regarding the first task, we have check if the container engines or required dependencies were
available in the Linux reference distribution for the project (Fedora-33) for the RISC-V 64-bits
architecture. All three engines are implemented with Go, so it is required in the three cases. We
did not find a working version of the container packages in the distribution and the version of
the Go packages provided was not fulfilling the engines requirements. To fix it, we generate new
RPM packages for the dependencies Go and runc as well as for Moby, Podman and Singularity
which can be found in the MEEP RPM repository. The modified specs for generating this RPMS
can be found in the MEEP OS RPM specs gitlab repository.

For enabling the execution of containers, the kernel must contain certain modules and the system
must be configured in proper way to allow container engines to successfully create and run
containers. To facilitate this task to system administrator, we have implemented an script which
checks if the system is configured in a proper way (available at this repository). It is testing if
mandatory and recommended modules such as cgroups, user namespaces, selinux, apparmor
are available and properly configured, or some virtual networking capabilities are available or if
resources limits are properly set. A part from that, it also test if one of the container engine is
available and running, and finally it tries to run a "hello world” testing container.

6.2. Working with distributed applications

The main difference between container engines is the networking management and it could
affect the execution of distributed computing frameworks like MPI, COMPSs or Spark multi-node
applications. In the case of Moby (Docker),it creates a virtual IP networks per host were containers
are deployed. If you want to communicate to containers in different host, you have to create an
overlay network to bridge the networks between nodes and deploy the containers in this nodes.
It introduces an overhead for the overlay management and it is very difficult to use the MPI
network fabrics (infiniband,...). In contrast, it facilitates the configuration of the framework, for
instance you just need to set the MPI hosfile with the IPs of the containers. Another option for this
container engine is to expose the ports used by the remote process managers and communication

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 25 / 21

LA ALY Exascale Platform

https://release.meep-project.eu/nexus/#browse/browse:rpmacme
https://gitlab.bsc.es/meep/meep-os/rpm-specs-riscv/
https://gitlab.bsc.es/meep/meep-os/docker-check

services (e.g 22/ssh, 443/https,...) to some port in the host and use the host IPs. This will reduce
the overlay management overhead, but it will require a more complex framework configuration
and the access to specific network fabric is not possible because the container is still using a
virtual network.

In the case of Singularity, they use the host networking services by default. It has the disadvantage
that the user has to be aware of the ports used by the hosts or other containers running in the
same host. It does not allow two containers to be deployed using the same port. In contrast, it
allows the usage of specialized networking fabrics as in the case of MPI applications. Network
devices, drivers and libraries of the host can be bound and used from the container. More details
about how to use MPI with Singularity containers can be found in this link.

6.3. Container releases

A part form enabling the use of containers, we have created several containers images compatible
with the RISC-V 64bits architecture including some of the software stack elements. You can
find them in the MEEP Container Image repository. In this repository we can find the following
images:

e riscvé4/fedora: A container image for RISC-V 64bit architecture with the a basic Fedora
installation. It is used as the base image for the rest of images.

e riscv64/compss: Inherited from riscvé64/fedora, it contains the COMPSs and PyCOMPSs
programming model and runtime. It can be used to run the different COMPSs workflows
described in Section 8.4.

e riscvé4/fflite: Inherited from riscvé64/fedora, it contains the TensorFlow Lite framework. It
can be used to run the TensorFlow models described in Section 8.3.1.

e riscv64/spark: Inherited from riscvé64/fedora, it contains the Spark framework. It can be
used to run the Epistasis use case described in Section 8.3.2.

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 26 / 21

LA ALY Exascale Platform

https://docs.sylabs.io/guides/3.9/user-guide/mpi.html
https://release.meep-project.eu/nexus/#browse/browse:acme:v2%2Friscv64

7. Performance Analysis Methodology

In this section we will describe the profiling support required to be installed in the MEEP software
stack; as well as the POP [5] methodology, used as a driving model to carry on our performance
analysis. POP methodology provides a quantitative way of measuring relative impact in perfor-
mance of the different factors inherent in parallelisation. The section is completed by extending
the POP methodology with vector analysis.

71. Profiling support

The following sections will describe the software components we have included in the software
stack in order to acquire basic information about the execution of benchmarks. Extrae [15]
will allow to generate Paraver [4] traces (events spread among timelines) that can be analyzed
post-mortem.

PAPI [37] and Libunwind [3] enables the access to hardware counters and the execution callstack
respectively. Such information will be requested by Extrae and injected in the Paraver trace in
order to complete the view.

714. Extrae

Extrae [15] is the package devoted to generate Paraver [4] trace-files for a post-mortem analysis.
Extrae is a tool that uses different interposition mechanisms on inject probes into the target
application so as to gather information regarding the application performance.

In order to facilitate the configuration, Extrae can be configured through an XML file. The
distributed package contains several examples.

1. Interposition mechanisms

Extrae takes advantage of multiple interposition mechanisms to add monitors into the
application. No matter which mechanism is being used, the target is the same, to collect
performance metrics at known applications points to finally provide the performance analyst
a correlation between performance and the application execution. Extrae currently uses
the following interposition mechanisms:

(@) Linker preload (LD_PRELOAD)

Most of the current operating systems allow injecting a shared library into an applica-
tion before the application gets actually loaded. If the library that is being preloaded
provides the same symbols as those contained in shared libraries of the application,
such symbols can be wrapped in order to inject code in these calls. In Linux sys-
tems this technique is commonly known by using the LD_PRELOAD environment
variable. Extrae contains substitution symbols for many parallel runtimes, as OpenMP
(either Intel, GNU or IBM runtimes), pthread, CUDA accelerate applications, and MPI
applications.

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 27 / 21

LA ALY Exascale Platform

2.

)]
y -

- 1' u‘

This interposition mechanism has been the one most widely used in the context of
MEEP throughout all the performance analysis that will be reported in D5.4.

(b) Dynlnst

Dyninst is an instrumentation library that allows modifying the application by injecting
code at specific code locations. Although it originally allowed modifying the appli-
cation code when the application was run, now it supports rewriting the binary of
the application so the code injection is required only once. Extrae uses Dyninst to
instrument different parallel programming runtimes as OpenMP (either for Intel, GNU
or IBM runtimes), CUDA accelerated applications, and MPI applications. Dyninst also
offers Extrae the possibility to easily instrument user functions by simply listing them
in a file.

In the context of MEEP, we do not use this mechanism so the distributed Extrae in
the MEEP Software Stack comes without Dynlinst support.

(c) Additional instrumentation mechanisms

Extrae also takes the advantage of some parallel programming runtimes that have
their own instrumentation (or profile) mechanisms available for performance tools.
These include the widely-known Message Passing Interface (MPI) which provides
the Profile-MPI (PMPI) layer. There are some compilers that allow instrumenting
application routines by using special compilation flags during compilation and link
phases.

(d) Extrae API

Finally, Extrae gives the user the possibility to manually instrument the application
and emit its own events it the previous mechanisms do not fulfill the user’s needs. The
Extrae APl is detailed in the Extrae user-guide documentation that accompanies the
package.

Sampling mechanisms

Extrae does not only offer the possibility to manually instrument the application code, but
also offers to use sampling mechanisms to gather performance data. While adding monitors
into specific location of the application produces insight which can be easily correlated
with source code, the resolution of such data is directly related with the application control
flow. Adding sampling capabilities into Extrae allows providing performance information of
regions of code which has not been instrumented.

Currently, Extrae sports two different sampling mechanisms. The first mechanism is the
old-known signal timers, which fires the sampling handler at a specific time interval. The
second sampling mechanism uses the processor performance counters to fire the sampling
handler at a specified interval of events interval. While the first mechanism can provide
totally uncorrelated samples with the application code, the second mechanism, using the
appropriate performance counters, can provide insight of the application but still presenting
some correlation with the application code/performance.

The monitors added by Extrae gather different types of information. Depending on the

,::l:v M E E MareNostrum Experimental D53 v10 28 / 91

Exascale Platform

monitor placement, each monitor can be taught to gather specific information. The most
common information gathered is:

(@) Timestamp

When analyzing the behavior of an application, it is important to have a fine-grained
timestamping mechanism (up to nanoseconds). Extrae provides a set of clock functions
that are specifically implemented for different target machines in order to provide the
most accurate possible timing. On systems that have daemons that inhibit the usage
of these timers or that do not have a specific timer implementation, Extrae still uses
advanced POSIX clocks to provide nanosecond resolution timestamps with low cost.

In the context of MEEP project we have used this last option by enabling it at the
configure command of the building/installation Extrae process (--enable-posix
-clock).

(b) Performance and other counter metrics

Extrae uses the PAPI and the PMAPI interfaces to collect information regarding the
microprocessor performance. With the advent of the components in the PAPI software,
Extrae is not only able to collect information regarding the microprocessor, but also
allows studying multiple components of the system (disk, network, operating system,
among others) and also extend the study over the microprocessor (power consumption
and thermal information). Extrae mainly collects these counter metrics at the parallel
programming calls and at samples. It also allows capturing such information at the
entry and exit points of the instrumented user routines.

(c) Reference to the source code

Analyzing the performance of an application requires relating the code that is responsi-
ble for such performance. This way the analyst can locate the performance bottlenecks
and suggest improvements on the application code. Extrae provides information re-
garding the source code that was being executed (in terms of name of function, file
name and line number) at specific location points like programming model API calls or
sampling points.

71.2. libunwind

The primary goal of this library is to define a portable and efficient C programming interface
(API) to determine the call-chain of a program [3]. The API additionally provides the means to
manipulate the preserved (callee-saved) state of each call-frame and to resume execution at any
point in the call-chain (non-local goto). The API supports both local (same-process) and remote
(across-process) operation. As such, the API is useful in a number of applications. Some examples
include:

e exception handling

The libunwind APl makes it trivial to implement the stack-manipulation aspects of exception

handling.
AHINEH MareNostrum Experimental
2 1;"&‘: M E E Exascale Platform D5.3v1.0 29 / 91

PAPI

libpfm
I

'perf' interface
Y

Linux Kernel

OpenSBI

HW counters

Figure 3: Software layers needed to access HW counters.

e debuggers

The libunwind APl makes it trivial for debuggers to generate the call-chain (backtrace) of
the threads in a running program.

¢ introspection

It is often useful for a running thread to determine its call-chain. For example, this is
useful to display error messages (to show how the error came about) and for performance
monitoring/analysis.

o efficient setjmp!()

With libunwind, it is possible to implement an extremely efficient version of setjmp().
Effectively, the only context that needs to be saved consists of the stack-pointer(s).

In the context of MEEP, we use Extrae (Section 7.1.1) to do the tracing and profiling and Extrae
relies on libunwind for its sampling feature (needed by the proposed Vector Analysis Methodology).
So we provide libunwind in the MEEP Software Stack through an RPM package.

71.3. Enabling hardware counters

Extrae (Section 7.1.1) leverages PAPI to read HW performance counters. Unfortunately, PAPI
does not currently provide support for RISC-V architectures. This is mainly because PAPI relies,
in turn, on lower software layers that lack (or have very preliminary RISC-V support) as are the
red boxes depicted in Figure 3.

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 30 / 91

LA ALY Exascale Platform

NV oONONULTDA WN -

PR RPRPRPRRLRRLRP PR
N oOoONONUT DA WNERO

The option taken to overcome this limitation in the MEEP project was to use a PAPI-like interface
that provides to Extrae the minimal APl/functionality that it needs while reading the HW counters
by accessing directly the RISC-V CSR event registers, thus avoiding the use of 1ibpfm.

To make Extrae work with this PAPI-like interface, the following options were needed at the
configure command of the building process: --enable-riscv64 --with-papi=<path-papi-
1i

ke> --with-papi-headers=<path-regular-papi>/include.

One last thing needed to read HW counters with this mechanism was to modify the OpenSBI
to set the permissions to allow this access at startup. This is normally done on-the-fly through
the perf kernel interface but, as we we are shortcutting its use, we need to hardcode the needed
allowing permissions. Listing 4 shows the implemented modifications at lines 5 and 18-19.
/% Disable user mode usage of all perf */
/*counters ezcept default ones (CY, TM, IR) */
if (misa_extension('S') && sbi_hart_priv_version(scratch) \

>= SBI_HART_PRIV_VER_1_10)

csr_write (CSR_SCOUNTEREN, 7); -->csr_write (CSR_SCOUNTEREN, -1);

VEZ

* OpenSBI doesn't use any PMU counters in M-mode.

* Supervisor mode usage for all counters are enabled by default

* But counters will not run until mcountinhibit is set.

*/

if (sbi_hart_priv_version(scratch) >= SBI_HART_PRIV_VER_1_10)
csr_write (CSR_MCOUNTEREN, -1);

/* All programmable counters will start running */

/*at runtime after S-mode request */

if (sbi_hart_priv_version(scratch) >= SBI_HART_PRIV_VER_1_11)
csr_write (CSR_MCOUNTINHIBIT, OxFFFFFFF8);\
-->csr_write (CSR_MCOUNTINHIBIT, 0x00000000);

Listing 4: OpenSBI modifications in mstatus_init function (in 1ib/sbi/sbi_hart.c).

It is worth mention that this version of OpenSBI together with the PAPI-like interface are both
included in the MEEP Software Stack.

7.2. POP Methodology

Attempting to optimise performance of a parallel code can be a daunting task, and often it is
difficult to know where to start. For example, we might ask if the way computational work
is divided is a problem? Or perhaps the chosen communication scheme is inefficient? Or
does something else impact performance? To help address this issue, POP ([5]) has defined a
methodology for analysis of parallel codes to provide a quantitative way of measuring relative
impact of the different factors inherent in parallelisation. This subsection introduces these metrics,
explains their meaning, and provides insight into the thinking behind them.

A feature of the methodology is that it uses a hierarchy of metrics (Figure 4), each metric reflecting
a common cause of inefficiency in parallel programs. These metrics then allow comparison of
parallel performance (e.g. over a range of thread/process counts, across different machines,
or at different stages of optimisation and tuning) to identify which characteristics of the code

Exascale Platform

}.‘ ;:;:A:v M E E MareNostrum Experimental D5.3v1.0 31 / 91

Global
Efficiency
*
I |
Computation Parallel
Efficiency Efficiency
h
|
Load Communication
)
I |
Serialisation Transfer
Efficiency Efficiency

Figure 4: POP metrics.

contribute to inefficiency.

The first step for calculating these metrics is to use a suitable tool (e.g. Extrae ([15])) to generate
trace data whilst the code is executed. The traces contain information about the state of the
code at a particular time (e.g. it is in a communication routine or doing useful computation) and
also contains values from processor hardware counters (e.g. number of instructions executed,
number of cycles).

The metrics are then calculated as efficiencies between 0 and 1, with higher numbers being
better. In general, we regard efficiencies above 0.8 as acceptable, whereas lower values indicate
performance issues that need to be explored in detail. The ultimate goal then for the POP
methodology is rectifying these underlying issues.

The approach outlined here is applicable to various parallelism paradigms, however for simplicity
the POP metrics presented here are couched in terms of a distributed-memory message-passing
environment (e.g. MPI). For this the following values are calculated for each process from the
trace data: time doing useful computation, time in communication, number of instructions &
cycles during useful computation. Useful computation excludes time within the overheads of
parallelism.

At the top of the hierarchy is Global Efficiency (GE), which is used to judge overall quality of
parallelisation. Typically, inefficiencies in parallel code have two main sources:

e Overheads imposed by the parallel nature of a code

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 32 / 21

LA ALY Exascale Platform

e Poor scaling of computation with increasing numbers of processes

and to reflect this we define two sub-metrics to measure these two inefficiencies. These are
Parallel Efficiency and Computation Efficiency, and our top-level GE metric is the product of these
two sub-metrics:

GE = Parallel Efficiency * Computation Efficiency

Parallel Efficiency (PE) reveals the inefficiency in splitting computation over processes and then
communicating data between processes. As with GE, PE is a compound metric whose components
reflect two important factors in achieving good parallel performance in code:

e Ensuring even distribution of computational work across processes
e Minimising time communicating data between processes

These are measured with Load Balance Efficiency and Communication Efficiency, and PE is defined
as the product of these two sub-metrics:

PE = Load Balance Efficiency * Communication Efficiency

Load Balance (LB) is computed as the ratio between average useful computation time (across all
processes) and maximum useful computation time (also across all processes):

LB = average computation time / maximum computation time

Communication Efficiency (CommE) is the maximum across all processes of the ratio between
useful computation time and total runtime:

CommE = maximum computation time / total runtime

CommeE identifies when code is inefficient because it spends a large amount of time communicat-
ing rather than performing useful computations. CommeE is composed of two additional metrics
that reflect two causes of excessive time within communication:

e Processes waiting at communication points for other processes to arrive (i.e. serialisation)
e Processes transferring large amount of data relative to the network capacity

These are measured using Serialisation Efficiency and Transfer Efficiency. For a detailed description
of these two submetrics, please refer to [5].

The final metric in the hierarchy is Computation Efficiency (CompE), which are ratios of total time
in useful computation summed over all processes. For strong scaling (i.e. problem size is constant)
it is the ratio of total time in useful computation for a reference case (e.g. on 1 processor or 1
compute node) to the total time as the number of processes (or nodes) is increased. For CompE
to have a value of 1 this time must remain constant regardless of the number of processes.

Insight into possible causes of poor computation scaling can be investigated using metrics devised
from processor hardware counter data. Two causes of poor computational scaling are:

¢ Dividing work over additional processes increases the total computation required

A '::'q" M E E MareNostrum Experimental D5.3v1.0 33 / 921

FrVLTY Exascale Platform

¢ Using additional processes leads to contention for shared resources
these can be investigated using Instruction Scaling and Instructions Per Cycle (IPC) Scaling.

Instruction Scaling is the ratio of total number of useful instructions for a reference case (e.g.
1 processor) compared to values when increasing the numbers of processes. A decrease in
Instruction Scaling corresponds to an increase in the total number of instructions required to
solve a computational problem.

IPC Scaling compares IPC to the reference, where lower values indicate that rate of computation
has slowed. Typical causes for this include decreasing cache hit rate and exhaustion of memory
bandwidth, these can leave processes stalled and waiting for data.

7.3. Vector methodology

The main goal of this task is to create a vector analysis methodology that will allow to compare
application performance with respect to the vector arithmetic behavior. The vector analysis
methodology is based on two main ideas. First, vector coverage, representing the portion of
code that has been actually vectorized. Second, vector efficiency, representing the actual length
of vector instructions with respect to the maximum allowed by the architecture. We defined
different metrics that may capture both coverage and efficiency of the vectorial behavior of
applications.

Dealing with vector coverage, we propose the following metrics:

¢ Arithmetic Computational Density (ACD), measures the number of arithmetic instructions
with respect to the total number of instructions.

¢ Arithmetic Vector Density (AVD), measures the number of vector arithmetic instructions
with respect to the total number of arithmetic instructions.

Dealing with vector efficiency, we propose the following metric:

¢ Average Vector Length (AVL), measures the average vector length for all vector arithmetic
instructions.

In addition to these metrics, we also recommend to substitute the Instructions Per Cycle (IPC)
measurement for Operations Per Cycle (OPC); due in applications sensitive to use vector instruc-
tions the IPC is not as important as OPC, so the latest will be the target to maximize.

One of the main goals of these metrics is to be generic and they can be potentially applied in any
HW architecture. In order to calculate them, the following set of HW counters is required:

e Set of counters to measure actual number of operations:
- BYTE_OPS: To count the number of arithmetic byte type operations.
- HALF_OPS: To count the number of arithmetic half-word type operations.

- WORD_OPS: To count the number of arithmetic word operations.

A '::'q" M E E MareNostrum Experimental D5.3v1.0 34 / 921

FrVLTY Exascale Platform

e Set of counters to measure actual number of instructions:

S_BYTE_INS: To count the number of arithmetic scalar byte type instructions.

S_HALF_INS: To count the number of arithmetic scalar half-word type instructions.

S_WORD_INS: To count the number of arithmetic scalar word type instructions.

V_BYTE_INS: To count the number of arithmetic vector byte type instructions.

V_HALF_INS: To count the number of arithmetic vector half-word type instructions.

V_WORD_INS: To count the number of arithmetic vector word type instructions.

Provided that previous counters are available together with other well-known counters such as
INS (number of instructions) and CYC (number of cycles), the proposed vector analysis metrics
can be computed as follows:

Computational Density:

COD — S-BYTE_INS+S_HALF_INS+S_WORD_INS+V_BYTE_INS+V_HALF_INS+V_WORD_INS
= INS

Arithmetic Vector Density:

AVD — V_BYTE_INS+V_HALF_INS+V_WORD_INS
= S_BYTE_INS+S_HALF_INS+S_WORD_INS+V_BYTE_INS+V_HALF_INS+V_WORD_INS

We can easily compute a new derived metric called Vector Computational Density (VCP) as the
product of Computational Density and Arithmetic Vector Density (VCD=AVD*CD).

The Average Vector Length (AVL) can be computed per data type:

B BYTE_OPS
* AVL b = v—pvrminss BYTE NS

_ HALF_OPS
e AVL_.h= V_HALF_INS+S_HALF_INS

B WORD_OPS
* AVL_w = V_WORD_INS+S_WORD_INS

Or we can compute an aggregated value for all the types as:

AV — BYTE_OPS+HALF_OPS+WORD_OPS
= S _BYTE_INS+S_HALF_INS+S_WORD_INS+V_BYTE_INS+V_HALF_INS+V_WORD_INS

The Operations Per Cycle (OPC) metric can be computed as:

OPC — BYTE_OPS+HAL£/_COPS+WORD_0PS

If we want to consider also memory instructions, an extended set of HW counters is needed by
adding the following ones:

e L_BYTE_ST1: To count the number of load instructions (byte type, stride 1)
e L_BYTE_STN: To count the number of load instructions (byte type, stride n)

e L_BYTE_IND: To count the number of load instructions (byte type, indexed)

A '::'q" M E E MareNostrum Experimental D5.3v1.0 35 / 921

FrVLTY Exascale Platform

L_HALF_ST1: To count the number of load instructions (half-word type, stride 1)

L_HALF_STN: To count the number of load instructions (half-word type, stride n)

L_HALF_IND: To count the number of load instructions (half-word type, indexed)

L_WORD_ST1: To count the number of load instructions (word type, stride 1)

L_WORD_STN: To count the number of load instructions (word type, stride n)

e L_WORD_IND: To count the number of load instructions (word type, indexed)

And the equivalent store versions: S_BYTE_ST1,S_BYTE_STN,S_BYTE_IND, S_HALF_ST1,S_-
HALF_STN, S_HALF_IND, S_ WORD_ST1,S_WORD_STN, S_ WORD_IND.

Our final goal is to use this set of metrics in the MEEP environments (RISC-V and ACME) but in
the meantime we have started working in x86 architectures due to: 1) some extra complexities
arising from using PAPI in RISC-V architectures; and 2) the activity is a collaboration with the
POP2 Centre of Excellence, that usually apply performance analysis methodologies to commodity
clusters.

We defined the metrics we described previously, together with others that help us in the analysis,
in terms of the x86 PAPI counters available on MN4 for double precision instructions/operations:

_ PAPI_DP_OPS
* AVL= 5aprvEe DP

_ PAPI_DP_OPS
* OPC= wipr7orove

_ PAPI_TOT_INS
* IPC= siprror—ove

_ PAPI_VEC_DP
* ACD= 5315107 7N5

e AVD=

__FP_ARITH:128B_PACKED_DOUBLE+FP_ARITH:256B_PACKED_DOUBLE+FP_ARITH:512B_PACKED_DOUBLE
- PAPI_VEC_DP

When compiling we found the different compiler flags needed to enable/disable vectorizations
and setting the vector length used by the hardware on an x86 architecture. In this regard, four
different set-ups have been tested for the different applications/benchmarks:

e AVX-512: flags to enable AVX-512 vectorization are used.
o AVX-2: flags to enable AVX-2 vectorization are used.
¢ NO FLAG: no specific flag related to vectorization is passed to the compiler.

e NO VEC: vectorization is explicitly disabled.

7.31. Validation with sample codes

The following codes have been analysed following the methodology:

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 36 / 21

LA ALY Exascale Platform

e vAdd (implemented synthetic kernel, see Listing 5, similar to the Add kernel part of the
Stream benchmark, see Section 8.1.1).

e DAXPY (implemented synthetic kernel, see Listing 6, same as the Axpy kernel part of the
RISC-V benchmarks presented in Section 8.2.1).

e FFTXIib (see Section 8.2.4 for a detailed description).
e HPCG (see Section 8.2.3 for a detailed description).
¢ CloudMicrophysics (see Section 8.2.5 for a detailed description).

Two different modes of analysis have been envisioned: when the code is just one kernel (like
vAdd or DAXPY) we just capture the values of the HW counters for the whole execution and
calculate the corresponding metrics.

Otherwise, it is, when we are dealing with more complex codes including multiple functions, we
use sampling. Extrae offers to use sampling mechanisms to gather performance data [15]. This
technique allows us to perform a differentiated study per function, as one would expect different
vectorial behavior on each one.

We found out, however, that in most cases the sampling rate provided by Extrae was not enough
to capture with accuracy the real behavior. In these cases, we included two more techniques,
namely, clustering [14] and folding [16].

Cluster analysis is applied to detect different trends in the application computation regions with
minimum user intervention. This detection provides an unique insight of the application behavior
that serves as a starting point to perform different types of analyses around the applications’
computation structure.

The folding provides very detailed performance information of these code regions on iterative and
regular applications. The folding combines the instrumentation with the sampling information to
unveil the performance evolution and to augment the details offered by simply using instrumenta-
tion or sampling. The folding consists in collapsing all samples obtained in the different identified
clusters in the clustering phase into one synthetic representative instance of each cluster.

So, depending on the kind of code under study, the methodology is established as follows:
e Simple kernels: Extrae tracing + Paraver analysis.

e Benchmarks: Extrae tracing with Sampling to map HW counters readings with code func-
tions + Clustering + Folding to increase the number of samples per cluster + Paraver analysis.

The defined metrics have been gathered, first, for the two proposed synthetic kernels. The source
code for both synthetic kernels can be seen in Listing 5 (vAdd) and Listing 6 (DAXPY) respectively.

#define LENGTH 80000000
void main(void) {
double y[LENGTH], x[LENGTH];
for(int i = 0; i < LENGTH; i++)
y[il = x[i] + y[il;

Listing 5: vAdd source code.

A '::'q" M E E MareNostrum Experimental D5.3v1.0 37 / 921

FrVLTY Exascale Platform

Version AVL OPC IPC ACD AVD

AVX-512 800 0.20 0.18 0.14 1.00
AVX-2 400 019 032 0.15 1.00
NO FLAG 200 0.16 052 0.16 1.00
NOVEC 1.00 0.12 0.72 0.16 0.00

Table 2: vAdd results.

Version AVL OPC IPC ACD AVD

AVX-512 800 041 0.18 0.28 1.00
AVX-2 400 040 034 030 1.00
NO FLAG 200 025 046 0.27 1.00
NOVEC 100 0.16 0.57 0.28 0.00

Table 3: DAXPY results.

#define LENGTH 80000000
void main(void) {
double y[LENGTH], x[LENGTH];
double a = 3.0;
for(int i = 0; i < LENGTH; i++)
y[il = axx[i]l + y[il;

Listing 6: DAXPY source code.

These metrics were obtained on BSC’s MareNostrum4, using Intel compiler version 17.0.4, and
for each version we highlight the following compilation flags:

e AVX-512: -qopenmp -03 -xCOMMON-AVX512
e AVX-2: -qopenmp -03 -xCORE-AVX2
e NO FLAG: -qopenmp -03
e NO VEC: -qopenmp -03 -no-vec
Results for vAdd synthetic kernel are presented in Table 2.

Regarding AVL, the observed behavior perfectly matches the theoretically expected. It looks
that AVX-512 instructions are really costly (this can be inferred by comparing with AVX-2, where
OPC is almost the same while keeping a relatively higher IPC). Results in the IPC column are also
reasonable as vector instructions are costly. Both AVL and AVD columns allow for a sanity check
to confirm that the used compilation flags are working as expected.

Next, Table 3 presents the gathered metrics for DAXPY synthetic kernel.

Basically the same conclusions as for vAdd apply. In this case the values in OPC and ACD columns
double the ones shown for vAdd: this is also quite expected as in this case we are performing
two floating-point operations in each iteration of the loop (instead of just one).

A '::'q" M E E MareNostrum Experimental D5.3v1.0 38 / 921

FrVLTY Exascale Platform

Version AVL OPC IPC ACD AVD

AVX-512 108 128 227 052 0.01

AVX-2 1.07 126 231 051 0.02
NO FLAG 105 110 267 039 0.04
NOVEC 105 110 268 039 0.04

Table 4: FFTXIib results.

Version AVL OPC IPC ACD AVD

AVX-512 499 093 102 0.18 0.61
AVX-2 1.73 0.67 147 026 0.26
NO FLAG 173 0.69 165 0.24 0.73
NOVEC 1.00 064 175 036 0.00

Table 5: HPCG results.

To highlight the use of this vector analysis methodology, Table 4, Table 5, and Table 6 report the
average results obtained for the FFTXIib, HPCG, and the CloudMicrophysics kernel benchmarks
respectively.

Overall, it can be seen that FFTXIlib does not benefit from vectorization. Only a small increase
in both AVL and OPC can be observed when enabling longer vector lengths by compilation
flags (avx512 and avx2). This may be explained by the fact that this benchmark relies on scalar
instructions to perform all the required computations. This fact is also highlighted by the AVvD
metric, which is the ratio between arithmetic vector instructions and overall arithmetic instructions
(as we can see, this value is almost zero). This behavior, however, is not uniform across all sampled
functions as it can be seen in Table 7.

The HPCG benhmark presents better numbers when compared to FFTXIlib in terms of vector-
ization. It can be seen that, for instance, AVL metric is more than half of the theoretical value
for the AVX-512 version. This is also underlined by the AVD value, which tell us that more than
half of the arithmetic instructions executed are vector instructions. Table 8 presents the detailed
results splitted by functions for this benchmark.

Detailed (per function) results for the CloudMicrophysics kernel are not provided as only one
function is sampled (cloudsc_c) so the results are exactly the same than the average already
presented in Table 6.

Version AVL OPC IPC ACD AVD

AVX-512 131 047 173 021 0.04
AVX-2 1.27 049 183 0.21 0.09
NO FLAG 117 047 195 0.20 0.17
NOVEC 1.00 044 204 022 0.00

Table 6: cloudsc results.

A '::'q" MEEP MareNostrum Experimental D5.3v1.0 39 / 921

FrVLTY Exascale Platform

Function Coverage AVL OPC IPC ACD AVD

fftw_no_twiddle_32 11.48% 1.16 1.03 210 043 0.02
fftwi_twiddle_9 10.39% 101 181 298 0.60 0.00
fftw_twiddle_9 10.30% 101 179 297 060 0.00

fftwi_no_twiddle_32 9.01% 1.00 1.04 237 044 0.00

fftwi_no_twiddle_9 7.79% 101 181 298 0.60 0.00

fftw_no_twiddle_9 7.48% 1.00 1.80 299 0.60 0.00

prepare_psi 7.07% 200 0.28 0.63 0.22 1.00
test(MAIN_) 4.93% 395 146 088 042 042
fft_y_stick_ 0.04% 099 246 246 041 0.00

Table 7: FFTXIib results for AVX-512 case detailed by function. The coverage column represents
the percentage of the total execution time spent in each function.

Function Coverage AVL OPC IPC ACD AVD
ComputeSYMGS_ref 71.45% 472 089 098 0.19 0.56
ComputeSPMV _ref 2741% 595 105 112 0.16 0.75

Table 8: HPCG results for AVX-512 case detailed by function. The coverage column represents
the percentage of the total execution time spent in each function.

A ,::l:' M E Ep MareNostrum Experimental D5.3v1.0 40 / 21

LA ALY Exascale Platform

8. Benchmarks description

This section describes the set of benchmarks used to explore the performance of MEEP envi-
ronments. This set of benchmarks is divided into four categories: System, HPC, Data Analytics
and Workflows. The performance analysis of all these benchmarks will be reported in deliverable
D5.4 - Final Release of the Software Stack.

8.1. System benchmarks

This section describes the benchmarks used to explore the intrinsic performance of a system
in terms of memory system bandwidth (Stream) and overheads of common HPC programming
models such as OpenMP and MPI (EPCC OpenMP and EPCC OpenMP/MPI).

To test the benchmarks on all MEEP environments which have specific features, we have created
configuration files per environment and a set of make and run scripts to deal with all of this
diversity and to have an automatic methodology to build and run them. Therefore, from an user
perspective the steps needed to test any of the benchmarks on a specific platform are:

1. Compile the benchmark for the desired platform:

./make-meep-bench.sh <platform-name>

2. Configure the SLURM parameters for the desired run:

./configure-slurm <slurm-config>

3. Execute the benchmark for the desired platform:

./run-meep-bench.sh <platform-name>

In the end, the user will have all the results under the output folder, that will also include all the
compilation information.

811. Stream

Description

The STREAM benchmark is a synthetic benchmark built with the intent of measuring the memory
bandwidth of accessing the main memory of a system (in MB/s), by executing simple vector
kernels (copy, scale, add and triad) [28]:

e Copy: cli] = a[i]

e Scale: b[i] = s * c[i]

o Add: c[i] = ali] + b[i]

e Triad: a[i] = b[i] + s * c[i]

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 41 / 21

LA ALY Exascale Platform

Objectives

As stated in the description, Stream is used to measure the performance of accessing the main
memory system of a computing platform. In this project, we use Stream to evaluate the per-
formance of the entire memory system (from cache to main memory). Furthermore, Stream is
also used as a co-design tool in the development process of the various iterations of the ACME
computing platforms, with special focus on the memory architecture. Specifically, this benchmark
is used to test memory architecture features that are being deployed. By analyzing the resultant
performance, conclusions are drawn and feedback is provided to the hardware developers to aid
in the development of these computing platforms.

Given that we are testing the memory bandwidth of various MEEP environments, reading memory
bandwidth in MB/s does not provide a clear picture when comparing them. Therefore, we modified
Stream to report memory bandwidth in Bytes per Cycle (bytes/cycle):

1

bytes/cycle = % * 5,

M is the total amount of memory involved in the test (in bytes), T" is the execution time of the
test (in seconds) and F is the clock frequency of the processor (in Hz).

Modifications

In the context of the MEEP project, we extended the capabilities of the Stream benchmark to
not only give us the bandwidth of accessing main memory but also to inspect the bandwidth of
the different cache levels of a system. Measuring the performance of the different cache levels
may present some challenges regarding the default timing model of Stream. Originally, Stream
iterates over NTIMES each specific kernel (copy, scale, add and triad):

for (i=0;i<NTIMES;i++){
time (start);
kernel () ;
time (end) ;

}

Which means that, depending on the size and complexity of the test and the granularity of the
timing model, we may get an invalid elapsed time. To circumvent this issue we moved the timing
operations outside of the for loop, and increased substantially the NTIMES variable to make sure
that in the limit we get closer to a valid elapsed time and also to eliminate the loop overhead.

time (start);

for (i=0;i<NTIMES;i++){
test ();

}

time (end) ;

Additionally, we also modified the time function from mysecond() that uses gettimeofday() to
clock_gettime(). This allow us to have nanosecond resolution which may be required to time the
tests that have small array sizes.

How are we able to measure the different cache levels bandwidth?

Even though we may not be able to accurately map each test to the desired cache level, one can
attempt to do so by varying the array sizes of each test. To exemplify this idea, let’s assume we

A '::'q" M E E MareNostrum Experimental D5.3v1.0 42 / 921

- 1' W Exascale Platform

have a computer system with only one cache level with a size of S., a main memory of size S,,
and let’s us also define the test as a simple array copy, such that

for (int i=0;i<N;i++){
y[il=x[i]
}

In this scenario, we will be working over two arrays of sizes S, and S, and to make sure that we
may be working on the cache we have to make:

Sy 4+ 8y < Se.

At the same time, to make sure we are accessing main memory we have to ascertain that:
Se <S¢ + Sy < S

Software release

We provide the source code and workload configurations used to test each MEEP environment.
This is available at MEEP Benchmarks webpage (Stream table entry).

81.2. EPCC-OpenMP

Description

The EPCC OpenMP benchmark measures the computational overhead in micro-seconds of
multiple OpenMP directives [18, 20, 27].

Objectives

From the complete set of OpenMP directives that this benchmark provides, we selected the
following subset:

e Synchronisation directives
e Loop scheduling clauses
e Tasking constructs

Starting with the selected synchronization directives, it is highlighted the important characteris-
tics and implications of each them:

e Parallel construct (Listing 7): Defines a parallel region with a specific number of threads.
All threads execute the code within this parallel region and at the end there is an implicit
barrier (synchronisation point for all threads).

for (j = 0; j < innerreps; j++) {

#pragma omp parallel
{
delay(delaylength);
}
}

Listing 7: Benchmark source code that uses the parallel construct: All threads will execute the

A '::'q" M E E MareNostrum Experimental D5.3v1.0 43 / 921

FrVLTY Exascale Platform

https://release.meep-project.eu/benchmarks.html#system-benchmarks

delay function.

e Forloop construct (Listing 8): Used to parallelise the execution of all iterations in a for loop.

Listing 8: Benchmark source code that uses the parallel construct followed by a omp for directive.

e Single construct (Listing 9): Define a region of code within a parallel region that is executed
by only one thread. The internal mechanism of control is by using a flag to define if a thread
should execute this region (when the flag is set other threads ignore this code region). There
is an implicit barrier at the end of this region.

Listing 9: Benchmark source code that uses the single construct: Only one thread will execute
the delay function.

e Critical construct (Listing 10): Defines a section of code that can only be executed by one
thread at a time.

Listing 10: Benchmark source code that uses the critical construct: One thread at a time will
execute the delay function.

e Atomic construct (Listing 11): Defines that a single statement that modifies the value of a
variable, in a parallel region, can only be executed by one thread at a time.

%‘ﬁ? MEEP oiaom ™ D5.3v1.0 44/ 91

}

Listing 11: Benchmark source code that uses the critical construct: One thread at a time wiill
execute the aaaa +=b instruction.

e Lock/unlock runtime routine (Listings 12):

omp_lock_t lock;
#pragma omp parallel private(j)
{
for (j = 0; j < innerreps / nthreads; j++) {
omp_set_lock (&lock);
delay(delaylength);
omp_unset_lock (&lock);
}
}

Listing 12: Benchmark source code that uses the lock/unlock routines: All threads will execute
the delay function one at a time.

Following with the loop scheduling clauses:

e Static (Listings 13): As the name states, this schedule mechanism assigns a fixed number
of iteration chunks to each thread (usually in a round-robin fashion). Importantly, the
major difference between static and guided is the fact that the assignment of iterations
to threads is done before computations in the loop start, rendering this clause overhead
smaller compared with static and guided.

#pragma omp parallel private(j)
{
for (j = 0; j < innerreps; j++) {
#pragma omp for schedule(static,cksz)
for (i = 0; i < itersperthr * nthreads; i++) {
delay(delaylength) ;
}

}
}

Listing 13: Benchmark source code that uses the static schedule clause.

e Dynamic (Listings 14): In this schedule mechanism, each thread executes a chunk of it-
erations from the loop and then requests another, until no more iterations are left to be

executed.
#pragma omp parallel private(j)
{
for (j = 0; j < innerreps; j++) {
#pragma omp for schedule(dynamic,cksz)
for (i = 0; i < itersperthr * nthreads; i++) {
delay (delaylength);
}
}
Ir
Listing 14: Benchmark source code that uses the dynamic schedule clause.

e Guided (Listings 15): Similar to dynamic, in the sense that each thread executes a chunk
and then requests another. However, the chunk size is computed differently, so that the
chunk size is progressively reduced as we reach the end of the iteration space.

LN :: MareNostrum Experimental D5 3 V1 o / 91

- 1' \ Exascale Platform

Listing 15: Benchmark source code that uses the guided schedule clause.

Ending with the tasking constructs:

e Parallel task generation (Listings 16): Each thread in the team will iterate through its own
for loop and create a task that will execute the delay function.

Listing 16: Benchmark source code that creates tasks by all threads. Each task is created to
execute the delay function.

o Serial task generation (Listings 17): In this example only one thread iterates though a loop,
creating one task per iteration. Remaining threads wait at an implicit barrier.

Listing 17: Benchmark source code that creates tasks by one thread. Each task will execute the
delay function.

o Task tree generation (Listings 18): Generation of tasks in parallel via recursive binary tree
function.

‘ I
-

'?’5‘%'??? MEEP oiaom ™ D5.3v1.0 46 / 91

}
}

void branchTaskTree(int tree_level) {
if (tree_level > 0) {
#pragma omp task

{
branchTaskTree(tree_level - 1);
branchTaskTree (tree_level - 1);
delay(delaylength) ;
}
}
I

Listing 18: Benchmark source code that creates tasks by one thread. Each task will execute the
delay function.

Regarding the timing model, and simply put, is defined as follows:
1. Get the reference time of the code region: ¢,.f
2. Get the time of the code region using the OpenMP directive: ¢,
3. Compute OpenMP overhead: toperhead = tomp — tref

The EPCC-OpenMP benchmark is used to measure the overhead of the selected set of OpenMP
directives in clock cycles.

Software release

We provide the source code and workload configurations used to test each MEEP environment.
This is available at MEEP Benchmarks webpage (EPCC-OpenMP table entry).

81.3. EPCC-OpenMP/MPI

Description

The EPCC-OpenMP/MPI benchmark measures the overhead for mixed-mode OpenMP/MPI
programming [19]. Specifically, this benchmark provides a set of micro benchmarks for both point-
to-point (for example, ping-pong, halo exchange among others) and collective communications
(for example, gather, scatter among others).

Objectives
In MEEP we will focus on the following collective communications:

o MPI Gather & Scatter: The MPI scatter mechanism can be viewed as the process of sending
data from the root process to all processes in a set. MPI gather is quite the opposite, i.e., all
processes in a set send data to one single process.

o MPI AlltoAll & AllReduce: Involves the computation of data from all processes and instead
of centralize the result in one process the results will be accessed to all processes.

A '::'q" M E E MareNostrum Experimental D5.3v1.0 47 / 921

FrVLTY Exascale Platform

https://release.meep-project.eu/benchmarks.html#system-benchmarks

e MPI Barrier: This is a synchronization mechanism, which means that all processes must
wait in a specific point until every process in the set reaches that point.

And for point-to-point communications, we report the following:

e Master-only, point-to-point communications: MPI communication takes place in the master
thread, outside of parallel regions.

e Master-only, halo exchange: All MPI processes participate and the processes are arranged
in a ring, where each process exchanges messages with its two neighbouring processes.

The metric used to measure the overhead of MPlI communications is clock cycles.
Software release

We provide the source code and workload configurations used to test each MEEP environment.
This is available at MEEP Benchmarks webpage (EPCC-OpenMP/MPI table entry).

8.2. HPC benchmarks

This section lists and describes the set of HPC benchmarks selected to analyze the performance
of all available MEEP environments:

e RISC-V Benchmarks

HPL - High-Performance Linpack

HPCG - High Performance Conjugate Gradients

FFTXIib

CloudMicrophysics
e Advection-MPDATA

Similar to what was described in the System benchmarks section, to test these benchmarks on
all MEEP environments which have specific features, we have created configuration files per
environment and a set of make and run scripts to deal with all of this diversity and to have an
automatic methodology to build and run them. Therefore, from an user perspective the steps
needed to test any of the benchmarks on a specific platform are:

1. Compile the benchmark for the desired platform:

./make-meep-bench.sh <platform-name>

2. Configure the SLURM parameters for the desired run:

./configure-slurm <slurm-config>

3. Execute the benchmark for the desired platform:

. /run—meep—bench .sh <platform-name>

A '::'q" M E E MareNostrum Experimental D5.3v1.0 48 / 921

FrVLTY Exascale Platform

https://release.meep-project.eu/benchmarks.html#system-benchmarks

In the end, the user will have all the results under the output folder, that will also include all the
compilation information.

8.21. RISC-V Benchmarks

Description

The RISCV-V Benchmarks [17] provide a large set of kernels that can be used to test simple
(also more complex) traditional HPC workloads. Moreover, this benchmark is targeted to run
on RISC-V platforms, although it can also be run in other platforms, provided some additional
configuration.

Objectives
In the context of the MEEP project, we are focused on the following set of kernels:

o Axpy - Performs a multiply and add operation of arrays. y < ax+y. Abasicimplementation
of this multiply-add operation can be:

for (i=0; i<mn; i++) {
dy[i] += axdx[il;
}

e Gemm - General matrix multiplication. C < a«AB + 8C. A basic implementation of the
matrix multiplication can be:

for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
for (int k = 0; k < K; k++) {
c[il[j] += alil[k] * bl[k1[j];
}

This kernel generally represents a compute bound problem.

e SpMyv - Sparse matrix-vector multiplication operation. y < Ax:

for (row=0; row<nrows; row++) {
elem_t sum = 0.0;
for (idx=ialrow]; idx<ialrow+1]; idx++) {
sum += alidx] #* x[jal[idx]];
+

y[row] = sum;

e Somier - Is a kernel inspired in the old bed base model composed of a mesh of springs. For
each point of the mesh this kernel computes the position, acceleration and velocity of this
3D structure. Exemplification of the nature of the computations:

for(i = 0; i<n; i++) {
for(j = 0; j<mn; j++) {
for(k = 0; k<n; k++) {
VI0]J[i1[j1[x] += A[0][i]l([j][k]I*dt;
VI11[i1 031 [k] += A[1]1[i1[j][k]*dt;

A '::'q" MEEP MareNostrum Experimental D5.3v1.0 49 / 921

- 1' W Exascale Platform

VI21[i1[j]1[k] += A[2]1[il[j]1[k]l*dt;

e FFT - This kernel uses the FFTW, a C subroutine library for computing the discrete Fourier
transform (DFT) [22]. This is the most complex kernel as it integrates the FFTW library to
compute the Fourier Transform.

The set of selected kernels serve the purpose of analysing the behaviour of simple memory-
and compute-bound kernels running on all the available MEEP environments. Specifically, we
are focusing on multi-thread and vector instruction performance. To this end we are primarily
targeting the OPC metric in the context of the vector performance methodology.

Contributions

The RISC-V Benchmarks were developed in the context of the EPI project. The MEEP project
also contributed to the development of this repository of kernels, specifically:

e Establish a standard and common infrastructure to develop, build and run a kernel;
e Provide support for BLAS libraries for a small subset of kernels: Axpy and GEMM,;

e Provide a new version for a subset of kernels that uses vector instructions based on the
OpenMP simd construct: Axpy, Gemm, Somier, SpMy;

¢ Additionally, we also put forward a "Baremetal” versions of a subset of kernels.
Software release

The source code and workload configurations used to test each MEEP environment are available
at MEEP Benchmarks webpage (RISC-V Benchmarks table entry).

8.2.2. HPL

Description

HPL (High-Performance Linpack) is a portable implementation of the High-Performance Lin-
pack benchmark and it solves a linear system of order N: Az = b by first computing the LU
factorization [8]. It is written in C and requires an MPI and BLAS implementation.

Objectives

This benchmark is utilized to analyse the behaviour of more complex application patterns in
the available MEEP environments. Specifically, we are focusing on multi-thread (supported by
OpenMP) and also multi-node execution (supported on MPI) for two different types of compilation
setups:

e scalar: where vectorization is disabled and therefore only scalar instructions are executed.

e vector: where auto-vectorization is enabled and therefore scalar and also vector instructions

A '::'q" M E E MareNostrum Experimental D5.3v1.0 50 / 921

FrVLTY Exascale Platform

https://release.meep-project.eu/benchmarks.html#hpc-benchmarks

are executed.

Regarding the performance analysis, we will evaluate the behavior of this benchmark using the
OPC metric in the context of the vector analysis methodology.

Software release

The source code and workload configurations used to test each MEEP environment are available
at MEEP Benchmarks webpage (HPL table entry).

8.2.3. HPCG

Description

HPCG [26] is a software package that performs a fixed number of multigrid preconditioned (using a
symmetric Gauss-Seidel smoother) conjugate gradient (PCG) iterations using double precision (64
bit) floating point values. HPCG is intended as a complement to the High Performance LINPACK
(HPL) benchmark (Section 8.2.2), currently used to rank the TOP500 computing systems. The
computational and data access patterns of HPL are still representative of some important scalable
applications, but not all. HPCG is designed to exercise computational and data access patterns
that more closely match a different and broad set of important applications, and to give incentive
to computer system designers to invest in capabilities that will have impact on the collective
performance of these applications.

HPCG is a complete, stand-alone code that measures the performance of basic operations in a
unified code:

e Sparse matrix-vector multiplication.

Vector updates.

Global dot products.

Local symmetric Gauss-Seidel smoother.

Sparse triangular solve (as part of the Gauss-Seidel smoother).

Driven by multigrid preconditioned conjugate gradient algorithm that exercises the key
kernels on a nested set of coarse grids.

e Reference implementation is written in C++ with MPI and OpenMP support.
Objectives

In the context of MEEP, we will evaluate the performance of the reference HPCG implementation
in terms of OPC for the different kernels of the code (as provided by the output of the software
itself), in different platforms. We will consider both OpenMP (for single-node executions) and MPI
(for multi-node executions) versions of the code and will evaluate its scalability for two different
compilation setups:

e scalar: where vectorization is disabled.

A '::'q" M E E MareNostrum Experimental D5.3v1.0 51 / 921

FrVLTY Exascale Platform

https://release.meep-project.eu/benchmarks.html#hpc-benchmarks

e vector: where auto-vectorization is enabled.
Software release

The source code and workload configurations used to test each MEEP environment are available
at MEEP Benchmarks webpage (HPCG table entry).

8.2.4. FFTXIib

Description

FFTXIib is mainly a rewrite and optimization of earlier versions of FFT related routines inside
Quantum ESPRESSO (QE) pre-vé; and finally their replacement. Despite many similarities, current
version of FFTXIib dramatically changes the FFT strategy in the parallel execution, from 1D+2D
FFT performed in QE pre v6 to a 1D+1D+1D one; to allow for greater flexibility in parallelization.

FFTXlib module is a collection of driver routines that allows the user to perform complex 3D
Fast Fourier Transform (FFT) in the context of plane wave based electronic structure software. It
contains routines to initialize the array structures, to calculate the desired grid shapes. It imposes
underlying size assumptions and provides correspondence maps for indices between the two
transform domains.

Once this data structure is constructed, forward or inverse in-place FFT can be performed. For
this purpose FFTXIib can either use a local copy of an earlier version of FFTW (a commonly used
open source FFT library), or it can also serve as a wrapper to external FFT libraries via conditional
compilation using pre-processor directives. It supports both MPI and OpenMP parallelisation
technologies.

FFTXIib is currently employed within Quantum Espresso package [6], a widely used suite of codes
for electronic structure calculations and materials modeling in the nanoscale, based on planewave
and pseudopotentials.

Objectives

In the context of MEEP, we will evaluate the performance of this benchmark in terms of execution
time for the different kernels of the code (as provided by the output of the software itself), in
different platforms. We will consider the OpenMP version of the code and will evaluate its
scalability (when possible) for two different compilation setups:

e scalar: where vectorization is disabled.
e vector: where auto-vectorization is enabled.
Software release

The source code and workload configurations used to test each MEEP environment are available
at MEEP Benchmarks webpage (FFTXIib table entry).

A '::'q" M E E MareNostrum Experimental D5.3v1.0 52 / 921

FrVLTY Exascale Platform

https://release.meep-project.eu/benchmarks.html#hpc-benchmarks
https://release.meep-project.eu/benchmarks.html#hpc-benchmarks

8.2.5. CloudMicrophysics

Description

CloudMicrophysics refers to an application developed in the context of the ECMWF Escape
project called Cloud microphysics scheme (for more information we refer the reader to document
D1.1 Batch 1: Definition of several Weather & Climate Dwarfs [23]). Simply put, CloudMicro-
physics computes the cloud and precipitation processes that are present in the the IFS model.

Objectives

The original source code provides a set of versions, however in MEEP we focus on the Standalone
C version to test the performance of the available platforms. Furthermore, this application is also
used as a co-design tool to test the autovectorization capabilities of the compiler used in MEEP
(LLVM-EPI).

In terms of performance analysis, CloudMicrophysics is used to explore the vector performance of
a more mature application on MEEP environments that contain hardware supporting this feature
(execution of vector instructions). To this end, we will mostly focus on the OPC metric provided
by the vector analysis methodology.

Modifications

Given that CloudMicrophysics provides an entire infrastructure to build and run different version,
and aiming to reduce the complexity of this miniApp, we have removed all of the parts that were
not related with the C version of this code. Moreover, we removed the dependencies on the
build tools (Ecbuild and CMake) and have written a Makefile to have a more flexible and easy
way to build and run different configurations of this application. This also allowed us to build
and deploy CloudMicrophysics on SDV computing platforms that are characterized by the lack
of the common infrastructure that we have in production platforms. Focusing on the relevant
kernels, we have modified the source code to explicitly vectorize most parts of the code. These
modifications entail the addition at the beginning of for loops of vectorization directives such as
pragma pragma omp simd or pragma clang loop vectorize(enable).

Contributions

We have detected a bug in the C version that was reported to the maintainers with the suggestion
for a correction (bug report [31]).

8.2.6. Advection-MPDATA

Description

Advection-MPDATA also refers to another application developed in the context of the ECMWF
Escape project called MPDATA (multidimensional positive definite advection transport algorithm)
for unstructured meshes (for more information we refer the reader to document D1.1 Batch 1:
Definition of several Weather & Climate Dwarfs [23]). Its purpose is to solve the PDEs modelling
the advection on a sphere using an unstructured mesh with the MPDATA algorithm.

A '::'q" M E E MareNostrum Experimental D5.3v1.0 53 / 921

FrVLTY Exascale Platform

Objectives

Advection-MPDATA is used to understand the performance of running a more complex application
in the available MEEP environments. Given that this application uses MPIl and OpenMP, we will
take advantage of Advection-MPDATA to inspect the multi-thread and multi-node performance
of this application. Additionally, we will also explore the vector performance of some parts of the
code that have been translated to C and therefore take advantage of compiler autovectorization
infrastructure.

Modifications

This application is written in Fortran and compared with CloudMicrophysics requires a more
complex infrastructure to build and run this application. However, we did not reduced this
complexity and instead ported some of the most time consuming functions to C. Specifically,
we focused on two distinct functions: compute_fluxzdiv which is the most time consuming and
limit_scalar_flux that overall represents a bigger computational loop. These modifications will
allow us to take advantage of the autovectorization capabilities of the LLVM-EPI compiler as well
as the VPU hardware of MEEP.

8.3. Data Analytics benchmarks

This section describes the benchmarks used to explore common data analytics performance on
MEEP environments. We use two data analytics runtimes:

e TensorFlow is a free and open-source software library for machine learning and artificial
intelligence. It can be used across a range of tasks but has a particular focus on training and
inference of deep neural networks. Due to the build system did not support for RISC-V on
MEEP we employ TensorFlow Lite framework. TensorFlow Lite only provides inference and
it is designed focusing on edge environments. As earlier explained we have enabled the
runtime on our RISC-V platforms. TensorFlow has become commodity for training models.
In the context of MEEP project we will use the three main neural networks from which
most works derive: MobileNet, ResNet50 and VGG-19. Additionally we use MNIST as a
functionality checker, as it has become the "hello world” for deep learning.

e Apache Spark is a multi-language engine for executing data engineering, data science and
machine learning on single-node machines or clusters. It allows for either batch or streaming
data with languages such Python, SQL, Scala, R or Java. Its main feature is that it brings
data closer to the place where it is computed: i.e, moves data from disk to memory for
faster processing. Thus increasing the performance over traditional big data. It has become
a commodity technology for data mining and machine learning.

8.31. TensorFlow Lite models

Description

Given that TensorFlow lite does only inference, we use pre-trained models. Over the trained
model we use a synthetic benchmark to assess inference timings over the model.

A '::'q" M E E MareNostrum Experimental D5.3v1.0 54 / 921

FrVLTY Exascale Platform

The models are a set of neural networks representative of current data analytics architectures.
The selected networks are:

e MNIST [29]: its input is a set of 10 hand-written numbers from O to 9. It identifies the
corresponding hand-written number. It is widely used as a hello world for deep learning.

e VGG-19 [36]: VGG19 is a variant of VGG model, which in short consists of 19 layers (16
convolution layers, 3 Fully connected layers, 5 MaxPool layers, and 1 SoftMax layer). There
are other variants of VGG like VGG11, VGG16, and others. VGG19 has 19.6 x 10° FLOPs.

e ResNet50: ResNet50 is a variant of the ResNet [24] model, which has 48 Convolution layers
along with 1 MaxPool and 1 Average Pool layer. It has 3.8 x 10° FLOPS. It is a widely used
ResNet model.

¢ MobileNet [25]: the MobileNet model is based on depthwise separable convolutions, which
is a form of factorized convolutions that factorize a standard convolution into a depthwise
convolution and a1 x 1 convolution called a pointwise convolution.

We train each of the selected models, and we get a pre-trained graph for each of the models.
From there, the benchmark consists of taking an input graph and an input image. Then, it runs
inference over 50 iterations (parametrizable) and outputs the average inference time and standard
deviation, as well as the fastest and longest inference timings.

Objectives

The benchmark is highly parametrizable in all its components. The parameters we will explore for
the benchmark are:

¢ |nput images: all images that will be inferred on each iteration of the benchmark.

e Use xnnpack (boolean): whether or not to enable XNNPACK [7] algebraic optimizations.
Highly benefits performance if vectorial instructions are enabled.

e Num threads: number of threads to be used for TFLite

e Allow fp16 (boolean): whether or not to enable FP16 operations. It will be used depending
on what architectures provide.

e Num runs: the number of iterations to be done for each input. Default: 50.
e Graph: the model to be used for inference.

e Dry run: if true, does an execution loading the model and allocating tensors but without
any computation (i.e., inference) performed.

e Warmup parameters: parameters to define how many inference iterations (or amount of
seconds) to do before running the actual benchmark.

e Use caching (boolean): to enable or not the use of cache.

e Run frequency: to execute at a given frequency rather than a given delay. By default, the
benchmark waits a pre-set time between inferences. However, we can define target frames

A '::'q" M E E MareNostrum Experimental D5.3v1.0 55 / 921

FrVLTY Exascale Platform

per second. If not possible, the benchmark will initiate the next iteration without waiting
for the completion of the previous one, doing its best to catch up.

e Run delay: delay seconds between inference iterations.

e Max seconds: maximum seconds for the benchmark to complete. If exceeding mid-iteration,
the benchmark will complete the iteration but will stop afterward. Default: 150s.

e Min seconds: minimum seconds to re-iterate for. Possible to make the number of inference
iterations done higher than the set.

The general metric to be used will be frames per cycle. Generally speaking, frames per second are
the most used measure of performance. However in the MEEP project we have several platforms
with very different clock frequencies and characteristics. Consequently a better measure is to
translate seconds into cycles.

Software release

The pre-trained models are offered as an additional RPM package which can be found at MEEP
Data Analytics Benchmarks webpage.

8.3.2. Spark Epistasis use case

Description

Epistasis is the interaction between genes that influences a phenotype. Genes can either mask
each other so that one is considered “dominant,” or they can combine to produce a new trait. It is
the conditional relationship between two genes that can determine a single phenotype of some
traits.

An HPC application has been developed to find all these interactions. The application uses
Apache Spark to move the data from disk to memory. Since genome data is massive, the genome
is split into smaller partitions. Once each of the partitions is moved in memory by Spark, the
application leverages numpy to make the computational part.

Objectives

The objective of the workload is to compute as many variations as possible in the lesser time
possible. Consequently our base metric will be cycles. Instead of using the traditional seconds, as
we have said earlier, it is a better measure when comparing with very different clock frequencies
among the different MEEP environments.

The parameters we can tune by the workload are:

¢ Vectorial vs non-vectorial: performance x86 with vectorial instructions vs without vectorial
instructions (useful to compare with RISC-V platforms).

¢ Number of nodes: limited number on arriesgado due to availability. We can't do multi-node
testing on SDV or ACME-EA vO (unless more nodes available with Ethernet communication)

¢ Number of Patients: use different cohorts with different amounts of patients.

A '::'q" M E E MareNostrum Experimental D5.3v1.0 56 / 921

FrVLTY Exascale Platform

https://release.meep-project.eu/benchmarks.html#benchmark-tflite
https://release.meep-project.eu/benchmarks.html#benchmark-tflite

¢ Partition sizes: dataset partition sizes. The number of samples that are processed at the
same time.

e Cross Validation sets: use a 5-fold CV or a 10-fold CV.
¢ Network usage: relevant in the case of multi-node runs.
Software release

The Epistasis use-case RPM can be found at MEEP Data Analytics Benchmarks webpage.

8.4. Workflows benchmarks

One part of the MEEP Software Stack is devoted to the development and orchestration of
parallel and distributed workflows with COMPSs. In this section, we present a set of Workflows
implemented with PyCOMPSs (the Python binding of COMPSs) which could take benefit of MEEP
capabilities. In the first part of the section, we present a set of dislib algorithms which implement
distributed workflows for ML. In the second part of the section, we present another workflow
use case which is focused on Hyper-Dimentional Computing.

The Software release of these workflows can be found in the MEEP Workflows Benchmarks
webpage

8.41. Dislib Algorithms

Description

The Distributed Computing Library is a machine learning library that is built on top of PyCOMPSs,
thus provides machine learning algorithms that are distributed and parallel. The library focuses
on the execution of data analysis algorithms on distributed platforms such as supercomputers.

QR Decomposition QR decomposition is the decomposition of a matrix into a QR product. A
more formal description would be the following: Let A be a m x n matrix where m > n, this can
be decomposed in a product of an orthogonal matrix Q (a real square matrix that all of its rows and
columns are orthonormal vectors) and an upper triangular matrix R.

There are several algorithms that perform such decomposition, which is usually used for cal-
culating the linear least squares. The most common algorithms are the Gram-Schmidt process,
Householder-Transformations, and several modifications of the past two. In dislib, the algorithm
that is used is the Householder-Transformations with a block factorization.

Matrix Multiplication (MATMUL) Matrix multiplication is a classic algorithm that consists of
multiplying two matrices. Even though this may seem an easy problem it needs a high computa-
tional power when the sizes of the matrices increase, the asymptotic cost is O(n?).

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 57 / 21

LA ALY Exascale Platform

https://release.meep-project.eu/benchmarks.html#benchmark-epistasia
https://release.meep-project.eu/benchmarks.html#workflow-benchmarks
https://release.meep-project.eu/benchmarks.html#workflow-benchmarks

To parallelize the application, dislib approaches the problem by dividing the multiplications
matrices into smaller ones, this way parallelizing the computations.

Cascade Support Vector Machine (CSVM) This is an algorithm that is used for classifying data
in a supervised environment. As opposed to linear regression, the SVM can perform an efficient
classification of non-linear data, using a kernel trick.

In the case of parallel environments, the SVM algorithm can be adapted to a CSVM. This is the
case of dislib’'s CSVM, which is based on Graf et al. implementation. This implementation creates
a cascade-like structure that will allow the algorithm to be parallelized. Therefore the algorithm
will break the datasets into N sets that will be trained separately and then will be merged in pairs
to compute the support vectors, this is going to be done iteratively until a single set emerges.

KMeans This algorithm belongs to the clustering algorithms family. When using this algorithm
the user has to have an idea of how many clusters will the dataset have, since one of the algorithm
parameters is the number of clusters (K). This algorithm usually starts with K (the number of
defined clusters by the user) randomly set centers in the space. Then it assigns to every data
point a single center based on the closest distance to it. After assigning the points each center is
recalculated to be set in the new center for all the points assigned. Then this process is done
iteratively until the centers converge (are not updated from their position).

The parallel version is performed by creating one task for every row in a block of the ds-array.
Then reduction is performed, which adds all the data points that belong to a center.

Gaussian Mixture Model (GMM) This algorithm is used to represent the distribution of a series
of data as the sum of several Gaussian components. Those are assumed to be generated from a
mixture of Gaussian distributions. The goal of this algorithm is to maximize the likelihood of the
model that is generated to describe the data. Similar to KMeans, this is a clustering algorithm.
However, in this case, there is no need to define the number of clusters, so it can be considered
unsupervised learning.

Random Forest Classifier (RF) This algorithm is used to classify data in different classes. It
creates a series of decision trees that will use to aggregate their predictions. The use of the
random forest instead of a single decision tree classifier is helpful since most applications will
have a higher prediction when aggregating the predictions compared to when a single one is
used.

Objectives

The objective has been to check the distribution. Moreover, we wanted to evaluate in MEEP
the kernel acceleration using vectorized mathematical libraries with single and multicore and
comparing to executing with scalar instructions. Furthermore, another main objective has been
to execute using multiple worker nodes and see the performance of MEEP when using multiple
nodes to execute the application.

The performance analysis has been done by comparing the execution times of the applications
using different mathematical acceleration libraries (different versions of BLIS). Additionally, using

A '::'q" M E E MareNostrum Experimental D5.3v1.0 58 / 921

FrVLTY Exascale Platform

Extrae we have also evaluated the parallelism and execution times of different parts in the
application functions.

Modifications

To run in the ACME EA platform, no code modifications are required. However to get benefit
of the acceleration provided by the platform, users have to use a Numpy version which is able
to use the accelerated BLIS. To do it, the user has to compile Numpy specifying the BLIS library
location as explained in Section 5.7 and add the Numpy installation location to the PYTHONPATH
environment variable.

8.4.2. Hyper-Dimensional Computing (HDC)

Description

Hyper-Dimensional Computing also known as Vector Symbolic Architecture, is a computing
framework that tries to emulate the animal nervous system. It does so by representing the space
using the properties of high-dimensional random vectors. The higher level idea is to represent
information z € X by protecting it to the X hyperspace with d dimensions, usually those being
10.000. The space is usually represented as binary H = {0,1}¢ or bipolar H = {—1,1}%. One
essential part of HDC is encoding the data, therefore it is needed to create a mapping from
the data space, to the hyperspace ¢ : X — H. The encoding has the property that vectors are
holographic. In itself this means that the dimensions of the hypervectors are independent and
identically distributed, this allows the hypervectors to be robust and each dimension carries the
same amount of information.

Beijing P 5 pollution This application tries to assess the pollution in Bejing by learning from
different features from the dataset 1. From these features, metrics such as pressure, wind
direction, wind speed, accumulated snow, accumulated rain, dew point, PM,> 5, can be extracted,
additionally, there is time data, which is an hour, day, and month. For this learning task, the aim is
to be able to predict the temperature.

This application is used to show the different prediction accuracy depending on the basis hyper-
vector used for encoding the data. The aim is to show that using circular hypervectors will have a
better accuracy result since there is the time data that can be represented using circular data.

Objectives

The objective has been to check the distribution. Moreover, we wanted to evaluate in MEEP
the kernel acceleration using vectorized mathematical libraries with single and multicore and
comparing to executing with scalar instructions. Furthermore, another main objective has been
to execute using multiple worker nodes and see the performance of MEEP when using multiple
nodes to execute the application.

The performance analysis has been done by comparing the execution times of the applications
using different mathematical acceleration libraries (different versions of BLIS). Additionally, using

"https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data

A '::'q" M E E MareNostrum Experimental D5.3v1.0 59 / 921

FrVLTY Exascale Platform

https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data

Extrae we have also evaluated the parallelism and execution times of different parts in the
application functions.

Contributions

This HDC application has been ported to the COMPSs framework, therefore parallelizing it. Apart
from that, to get benefit of the acceleration provided by MEEP, the user has to use a Numpy
version which is able to use the accelerated BLIS. To do it, the user has to first install Numpy
specifying the BLIS library location as explained in Section 5.7 and add the installation location
to the PYTHONPATH environment variable.

8.5. Systolic Array benchmarks

In D5.1 Benchmark suite of HPC applications we also included the MLPerf and the Bolt66-App as
part of the benchmarks suite. These applications aim to functionally validate the implementation
of the two MEEP Systolic Arrays, as well as to evaluate their performance.

We will present the application porting as well as its evaluation in the upcoming deliverable
D5.4 Final release of the software stacked (M42). The application porting will leverage the custom
instructions presented in Section 4.3 and detailed in Appendix A.

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 60 / 21

LA ALY Exascale Platform

9. The MEEP Offload Mode

In this section we present the Offload Mode of the MEEP accelerator, and the support required
for single and multiple devices.

9.1. Single-device support

We have implemented a prototype infrastructure supporting OpenMP offload between the
Intel Host, acting as the application runner, and the RISC-V on the FPGA, acting as the device
accelerator.

In this section we present the compiler and runtime infrastructure that we have implemented for
this purpose. It is based on a previous implementation done by FORTH (Crete, Greece), in the
context of the EPI project, that we have adapted to the MEEP environment.

9141. Compiler support for MEEP offload

The support for the MEEP offload uses the code generated from the LLVM compiler. For the
MEEP offload, the compiler is invoked to compile for an Intel Host and a RISC-V target device. It
has been configured to generate x86_64 code for the Host and RISC-V rvé4imafdc code for the
RISC-V as an accelerator.

When configured, the compiler generates code for the OpenMP directives in such a way that
the regular code runs in the Intel architecture, and the code annotated with the target directive
is spawned onto the RISC-V accelerator. LLVM is able to encapsulate the RISC-V binary as a
target section in the host binary. The management of the RISC-V code is left to the libomptarget
LLVM-OpenMP support library.

9.1.2. Runtime support for MEEP offload

The support for OpenMP target on the Host side is implemented as a plugin to the libomptarget
library. In our case, we have adapted the plugin developed by FORTH in the EPI project to work
with the RISC-V accelerator on the FPGA.

Currently, the support that has been implemented on the prototype covers these services:

e Support the Host side communications with the target device.

Check and transfer the RISC-V binary to the RISC-V environment.

Determine the number of devices available. We currently support a single one.

Initialization and finalization of the application on the device side.

Allocating and deallocating data areas for the device.

}- ,::l:' M E E MareNostrum Experimental D5.3v1.0 61 / 21

wre Exascale Platform

OpenMP

app/
libomptarget

Offload
server

Data-xchg area (128KB
S output libxtasks/libxdma Libc, libc++, pthreads, etc
Libc, libc++, pthreads, etc T
Linux OS il
\ input Q)S:\',I"; Zﬁl‘; Linux OS
Risc-V + VPU extensions 0x8_0000_0000 0x8_0002_0000
[Programming Logic HBM (global memory) RISy (I, oSG,
Guest Host

Figure 5: Diagram of the MEEP Offload infrastructure

e Transfer data into the device, and out of the device.
e Manage the target regions of code to run code onto the device.
The current implementation is missing the following functionalities:
e Manage the target teams regions.
e Asynchronous management of data transfers.
e Asynchronous management of code regions.
Figure 5 shows the way communications are implemented between the Host and the RISC-V.

The communications are implemented through a specific shared memory area laid out between
the Host and the RISC-V (Data-xchg). This shared memory region is implemented either as a
BlockRAM in the FPGA chip, or as part of the DRAM/HBM memory on the FPGA board. This
shared memory area is accessed using the QDMA driver services for DMA transfers. In the current
implementation the DMA transfers issued through the QDMA driver are not interacting with the
Openpiton memory hierarchy on the RISC-V side. Any data that is actually on the processors
cache memory is not invalidated when a DMA transfer happens from the Host side. For this
reason, the prototype cannot use the full range of HBM memory to support large data structures.
The shared memory area is implemented in the 1/O space, and thus is not cached by Openpiton
in the cache hierarchy. We have implemented this infrastructure as a demonstrator prototype,
not full-fledged, so no additional copies are done between the reduced-size memory in the I/O
space, and the Offload server memory. This reduces the size of the application data to only a few
tens of Kbytes.

The shared memory area is structured as a small descriptor containing the identifier of each
service requested, and a specific slot area that is structured according to each service requested.
The description of the services is presented in section 9.1.3.

SN '::'l{v M E E MareNostrum Experimental D5.3v1.0 62 / 91

Exascale Platform

9.1.3. RISC-V side offload support

On the RISC-V side we run a server that waits for requests for target offload commands from the
host.

When transferring a binary file, it is temporarily stored in the slot area, saved in the local file
system on the RISC-V side, and then loaded into the server application space.

The target binary has a specific entries section, that is used to find the symbols that can be invoked
as OpenMP target regions. This section is used every time that a new target region is invoked
from the host, through the offload target region service.

Before invoking a target region, the Host code allocates the data regions needed, and copies the
input data for the variables marked as to.

The offload target region service receives a function identifier and its arguments. The server
uses the services of the foreign-function interface (libffi) in order to invoke the proper function
implementing the requested region, with its associated arguments.

After the execution of a region, the Host code transfers the data out for those variables marked
as from.

9.1.4. Testing

We have tested the prototype infrastructure with a pair of examples:
o A test sample showing the ability to initialize and copy data.
e A matrix multiplication example.

With these tests we demonstrated the feasibility to implement the OpenMP offload services on
the MEEP environment.

9.1.5. BLIS single-device approach

The offload execution mode of BLIS differs from the self-hosted mode in the sense that when
the host launches the application and we have a call to a BLIS service, the respective workload is
offloaded to the available accelerators in the computing platform. Specifically, we offload and
distribute the workload in two different forms: 1) The work performed from BLIS is offloaded
to only one accelerator (single-device) or 2) the workload is distributed among a set of devices
(multi-device approach).

The BLIS single-device approach exploration was developed using a computing platform that is
characterized by a host (CPU) and a set of connected accelerators (GPUs). Moreover, to offload
computations from the host to the accelerator we relied on the OpenMP programming model,
specifically the omp target construct.

Next, we highlight the nature of adaptations that are needed for an application to take advantage

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 63 / 21

LA ALY Exascale Platform

of the BLIS offload version. Thus, we have to make two clear distinctions: first, the modification
in the application side that the end user has to perform and second, the modifications on the
BLIS library. From the application side, the user should be responsible for creating a data shared
environment using the #pragma omp target data map directive (see Listing 19). This will allow
the re-utilization of data on the accelerator and no extra communications between host and
accelerator are needed, because we are working with data that lives in the device (with the
exception of synchronization that might need to occur if the host updates variable that are in the
device).

Listing 19: Example of an application that defines a data shared environment where a set of BLIS
routines are called.

The modifications needed in the BLIS library share similarities with the application side, specifically,
here we also have to create a data shared environment. The additional step is the inclusion of the
#pragma omp target teams distribute parallel for (see Listing 20) directive before the for loops so
that the workload is actually divided and computed by the accelerator.

Listing 20: Example of the nature of modifications done in the BLIS kernels.

4
‘ygzﬁ MEEP eicstum somens D5.3vL0 64/ 91

Figure 6 shows a timeline of an application that calls three BLAS kernels (in this example the
vector addition). We can decompose this figure in three phases:

¢ |n the first phase we have the transfer of data from host to device that corresponds to the
two arrays (x and y) that we are updating (shown in the figure as the top dashed-green box).

e The second phase (middle dashed-red box) demonstrates the call of the three BLAS level 1
kernels.

e The third phase (bottom dashed-green box), shows the retrieving of the data after all
computations have been finished in the accelerator.

==22130== Profiling application: ./blis.addv 10000000
==22130== Profiling results:

..-Start Duration Grid size __ Size Throughput SrcMemType DstMemType _______ [Device Context Stream Name ____________ .. cccoo-
1st :351.97ms 553.09us - 7.6294MB 13.471GB/s Pageable Device Tesla V100-SXM2 1 7 [CUDA memcpy HtoD] :
13526105 543.00us - 7.62048_13.719G8/s _Pageable ___Device Tesla VIOQ-SNR L7 lcUpAmencpy Hrodl i
lr364.78ms 1.7910us - 24B 12.780MB/s Pageable Device Tesla V100-SXM2 1 7 [CUDA memcpy HtoD] :
1370.09ms 953.89us (240 1 1) - - - - Tesla V100-SXM2 1 7 bli_daddv_generic_ref$_omp_fn$2[97] |
2nd:371.80ms 1.7910us - 24B 12.772MB/s Pageable Device Tesla V100-SXM2 1 7 [CUDA memcpy HtoD] H
:376.60ms 933.31us (240 1 1) - - - - Tesla V100-SXM2 1 7 bliidaddvigenericiref$7omp7fn$2[137]:
1378.27ms 1.7920us - 24B 12.772MB/s Pageable Device Tesla V100-SXM2 1 7 [CUDA memcpy HtoD] N
:383.B7ms 977.82us (240 1 1) - - - Tesla V100-SXM2 1 7 bli daddv generic ref$ omp fn$2[117]_:
3rdised Tens J520.53us 111N 7825408 143146875 77 “bevice T “Pageatle. Tesla Vig9- Sk T 7T TT 77777 T ICUbA mencpy Do -1 T TT T :

Figure 6: Time profile of an application that calls three times the BLAS vector addition kernel,
using Nvidia's profiler tool. Time dimension is read in each row, while the type of computations
can be seen in the last column (column called Name with attributes such as CUDA memcpy HtoD,
bli_daddv_generic_ref, among others).

For BLAS levels 1 and 2, this analysis demonstrates that we have a successful offload and
re-utilization of data, as we do not see any memory operations in between the BLAS kernel
executions. However, for BLAS level 3 kernels, we do not achieve the same behaviour, therefore,
we are not able to apply the same methodology. Yes, it is true that we have a successful offload
of the BLIS routines to the accelerator, but we are not able to reuse data. Hence, we end up
with extra communications in between host and device, when calling consecutive BLAS level 3
kernels. This behaviour is shown in Figure 7, where we can report the following:

e First phase with the transfer of data from host to the accelerator (top dashed-green box).

¢ In the next phase we can group the three calls to the matrix multiplication BLAS kernel
(red-dashed boxes). Here, we can observe that in between BLIS kernel calls there are two
sets of data transfers from the host to the accelerator (dashed-green boxes). It is true that
during the entire execution of each BLIS kernel we have data re-use, altough in between
kernel calls we observe data transfers and if data was being reused, these data transfers
between the kernels calls should not be present. This should be true because we already
transferred this data in the beginning of the computations and all kernels work over the
same data. This behaviour might be explained by the fact that the OpenMP runtime is not
able to detect that new allocations for this data are done by the BLIS infrastructure.

e The last phase is characterized by the retrieving of the resultant matrix to the host side
(bottom dashed-green box).

In summary, we achieve the desired behaviour for BLAS 1 and 2 levels, but there is no re-utilization
of data for the third BLAS level and thus a different approach should be devised to achieve a
re-utilization of data in the accelerators.

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 65 / 21

LA ALY Exascale Platform

==17403== Profiling application: ./dgemm.blis
==17403== Profiling results:

o 3tart Duration Grid size Size Throughput SrcMemType DstlemType _______0© Device Context Stream Name _______ . o cccececemamee '

1St 1503.61ms 5.5879GB/s Pageable Device Tesla V100-SXM2 1 7 [CUDA memcpy HtoD] H
1506.73ms 0000KB _1.6557GB/s __Pageable ! Device Tesla V1o sxz______. R 7 1CUDA memcpy HtoD] e
.. M
r506.76ms 1.4080us - 8B 5.4186MB/s Pageable Device Tesla V100-SXM2 1 7 [CUDA memcpy HtoD] H
1512.20ms 231.87us (240 1 1) - - - - Tesla V100-SXM2 1 7 bli dgemm generic ref$ omp fn$0[123] »
:513.25ms 1.7600us - 32B 17.340MB/s Pageable Device Tesla V100-SXM2 1 7 [CUDA memcpy HtoD] :

- - - - Tesla V100-SXM2 1 7 1

:518.17m5 89.952us (240 1 1) blifdgemmigenericiref$7ompjn$2[133]_.

11.235645 Device Tesla V160-SXM2

[

5966GB/s Pageable

11.23570s 1.3120us - 8B 5.8151MB/s Pageable Device Tesla V100-SXM2 1 7 [CUDA memcpy HtoD] 1
:1.240885 200.57us (240 1 1) - - - - Tesla V100-SXM2 1 7 blifdgemmigenericiref$7ompjn$0[1459]:

2n 11.24110s 1.6960us - 32B 17.994MB/s Pageable Device Tesla V100-SXM2 1 7 [CUDA memcpy HtoD] 1
:1.245485 83.007us (240 1 1) - - - Tesla V100-SXM2 1 7

- bli_dgemm_generic_ref$ omp_fn$2[1469]j
1 o o - -

e Pt el W X T L S e aga-b-l Pl evice " Tasta ViGe- S e
e o oo o e e e o e e o e ey o e e e e
11.94166s 1.3120us - 8B 5.8151MB/s Pageable Device Tesla V100-SXM2 1 7 [CUDA memcpy HtoD] :
:1.946045 202.53us (240 1 1) - - - - Tesla V100-SXM2 1 7 bli_dgemm_generic_ref$_omp_fn$0[2795]x
11.94710s 1.6640us - 32B 18.340MB/s Pageable Device Tesla V100-SXM2 1 7 [CUDA memcpy HtoD] H
11.95148s 80.800us (240 1 1) - - - - Tesla V100-SXM2 1 7 bliﬁdgemmigenericiref$7ompjn$2[2805]_:

Figure 7: Time profile of an application that calls three times the BLAS vector addition kernel,
using Nvidia's profiler tool. Time dimension is read in each row, while the type of computations
can be seen in the last column (column called Name with attributes such as CUDA memcpy HtoD,
bli_dgemm_generic_ref, among others).

9.2. Multi-device support

One of the possible scenarios considered earlier in the MEEP project was that a single node could
offer many accelerators where work could be offload to. This led us to identify a gap in OpenMP
support for offloading.

OpenMP has offloading support since version 4.0. However, the interface offered by OpenMP
only allows offloading to a single device at a time. Under a context of a host node with many,
regular, accelerators, OpenMP does not offer convenient syntax for this use case.

9.21. OpenMP extensions

We proposed an extension to OpenMP in which we introduce a new OpenMP construct called
target spread. Instead of receiving a single device clause, the spread construct has a devices
clause which represents the set of devices that will execute the offloaded region. Rather than
choosing a design similar to that of the OpenMP parallel construct, where execution would be
replicated among devices, we chose to constraint target spread to OpenMP loops.

Constraining ourselves to loops allows us to introduce two special values, omp_spread_start
and omp_spread_size which represent the set of iterations that a device executes. Our initial
implementation focused on a static scheduling approach: the iterations are divided among devices
using a chunk size that can be specified by the user. Listing 21 shows an example of the target
spread construct applied to a SAXPY kernel.

void saxpy_multi_dev(int n, float a, float *x, float *y) {
#pragma omp target spread \
devices (0, 1, 2, 3) \
spread_schedule(static, 1024) \
map(to: alomp_spread_start:omp_spread_sizel]) \
map (tofrom: y[omp_spread_start:omp_spread_sizel)
for (int i = 0; i < n; ++i)
y[il = a * x[i] + y[il;

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 66 / 91

LA ALY Exascale Platform

Listing 21: Example of the target spread construct applied to a simple SAXPY kernel.

One limitation of centering the extension around loops is that data transfers in OpenMP can be
defined at arbitrary parts of the code. We generalised the data transfer constructs into spread
versions. The multiple devices context was defined in a new clause called range. Listing 22
shows the spread version of data transfer constructs OpenMP. Listing 23 shows that the same
syntax can be used in the scoped target data construct.

Listing 22: Example of the target {enter|exit|update} data spread constructs

Listing 23: Example of the target data spread construct

9.2.2. Compiler support for multi-devices

The proposal of the previous section was implemented in the C/C++ frontend of LLVM. Very
minimal changes were done to the runtime, only to support a new kind of schedule for the loops
that we marked as target spread.

Clang lowers its C/C++ input, represented in the frontend using the Clang AST, directly into
LLVM IR which already contains calls to the runtime. Our proposal can be seen as another kind

'
IRA MEEP oo D5.3v1.0 67 1 9

of desugaring from OpenMP to the OpenMP runtime functions. In our case it was possible to
express our transformation in the form of the existing target construct.

The implementation has been tested on a system equipped with four NVIDIA A100 GPUs.

9.2.3. Middle-ware extensions

In a multi-device environment, each accelerator will have a range of DMA-capable memory, to be
used for the Host - Accelerator communications.

Supporting multiple devices for the MEEP offload mode will require to update the libomptarget
LLVM-OpenMP support library to access these separate memory areas for the implementation
of the DMA transfers to the different accelerators.

The OpenMP infrastructure already supports Accelerator-1Ds, in order to operate with different
accelerators, and is able to distribute the work from a target loop onto them.

9.2.4. BLIS multi-device approach

The exploration done in this context is purely a conceptual formulation of how this approach
should behave. Thus, the BLIS multi-device approach should follow a similar pattern as shown in
the BLIS single-device approach section. This means that in the application side a data parallel
environment is created (Listings 24) using the target data spread construct. Here, we should
define the variables that are going to be offloaded to the multiple devices. The set of multiple
devices can be defined as a variable (DEVICESET) that is set manually or inquired by the runtime.
By default each offloaded variable will be divided into chunks as a function of the number of
devices.

int main(){

// Initalization phase ...

init(x,y);

// 1st set of computations ...

// Offload BLAS computations to accelerator

#pragma omp target data spread \

map (spread(devices (DEVICESET) ,range(0:n)), \

to: x[omp_chunk_start:omp_chunk_size]) \

map (spread (devices (DEVICESET) ,range(0:n)), \

tofrom: y[omp_chunk_start:omp_chunk_size])

{
// 1st call to a BLIS routine
cblas_daxpy(n, scalar, x, 1, y, 1);
// 2nd call of a BLIS routine
double dot_product = cblas_ddot(n,x,1,y,1);
// More BLIS routine calls ...

}

// More computations ...

// Final ...

}

Listing 24: Example of an application that defines a data shared environment where a set of BLIS
routines are called.

A '::'q" MEEP MareNostrum Experimental D5.3v1.0 68 / 921

- 1' W Exascale Platform

The modifications in the BLAS library rely on the newly proposed target spread devices construct
(Listings 25). The first step should be to reproduce again the data shared environment using
the aforementioned target data spread construct. To offload and distribute work among the set
of devices we should add the target spread devices construct, when encountering a for loop. To
make sure that work is computed in parallel by all the devices, we have to setup a set threads
(minimum one per device) and therefore, we have to add the parallel and single constructs (the last
one just to have one thread creating the required tasks to complete the assigned computations).
void PASTEMAC3(ch,opname,arch,suf)(conj_t conjx,dim_t n,

ctype* restrict x,inc_t incx,ctype* restrict y,
inc_t incy,cntx_t* restrict cntx)

V/ARTE

_Pragma("omp target data spread \

map (spread (devices (DEVICESET), range(0:n)), \
to: x[omp_chunk_start:omp_chunk_size]) \

map (spread(devices (DEVICESET), range(O:n)), \
tofrom: y[omp_chunk_start:omp_chunk_size])")

{
if (bli_is_conj(conjx)) {
if (incx == 1 && incy == 1) {
_Pragma("omp parallel")
_pragma("omp single")
_Pragma("omp target spread devices(DEVICESET) nowait")
for (dim_t i = 0; i < n; ++i) {
PASTEMAC (ch,addjs) (x[i], y[i]);
}
}
else {
V/ARTE
}
}
}
}
Listing 25: Example of the nature of modifications done in the BLIS kernels.
9.2.5.

While flexible, CPUs may not be able to fulfill the performance requirement of specific workloads.
In that sense, we believe that accelerators will become more prevalent. A plausible scenario will
be systems equipped with several accelerators, with similar performance characteristics, as it
may happen in multi-GPU systems.

In that sense, OpenMP should provide an answer in the form of a convenient mechanism to
exploit those multi-device systems. Our proposal is a first step towards that goal. It has been
presented in meetings at the OpenMP committee, and while our proposal may not be the one
eventually chosen, we believe it has sparked conversations about the forthcoming multi-device
reality of systems.

LN :: MareNostrum Experimental D53 v10 / 91

- 1' \ Exascale Platform

10. Conclusions

In this deliverable we have presented the current status of the full MEEP Software Stack: from the
Operating System low-level support, to the higher levels of the application layer. The integration
of all these components aim to allow ACME EA programmers to exploit all the system capabilities,
being able to deploy their own use cases, and to obtain useful information to infer the performance
behaviour. As described in the Description of Action (DoA): “all the application that have been
identifed are ported to run on top of the emulation platform”; and for each application’s entry we
have also described the metric of interest and its evaluation methodology (from DoA: "The final
phase will focus on application performance evaluation and debugging”). In short, we are fulfilling
the deliverable’s requirements and, in addition, reporting the current state of the whole Software
Stack.

On the Operating System, we have included the support for communications on the ACME EA
infrastructure. On the one hand, we have implemented a Linux driver on both the host and
RISC-V sides supporting Ethernet communications over the FPGA PCle connector. On the host
side, we have integrated this support on the QDMA driver by using another driver provided by
Xilinx: the Open NIC driver. On the RISC-V side, we have adapted the same Open NIC driver to
work with the shared memory that the platform implements.

On the other hand, we have adapted the Ethernet driver developed on the EPI project to the
MEEP infrastructure to work with the FPGA QSFP connectors at 10/100 Gbit, allowing point to
point communications with other FPGA boards, or connectivity through a switch.

The compiler infrastructure available on MEEP, based on LLVM, effectively supports the two
main accelerators of MEEP: the RISC-V Vector Extension and the two Systolic Arrays of MEEP.

The vector support leverages previous work done on LLVM in other projects. Thanks to the vector
length agnostic nature of the RISC-V Vector Extension allows for exploring scenarios where the
software can communicate facts to the hardware. The hardware can choose to change some of
its characteritics, such as the vector length, as an answer to this information. We have explored
prefetch instructions to convey memory access information to the CPU with mixed results.

The Systolic Array support is a new development that enables interfacing the MEEP Systolic
Arrays via an ISA interface. This ISA interface is built on top of an extension of RISC-V.

The workflow management system provided in the MEEP Software stack is COMPSs, it provides
a programming model and runtime to create parallel and distributed workflows as simple Java
programs and Python Scripts(PyCOMPSs). We have ported the COMPSs runtime to run in RISC-V
64-bit architecture, and this modifications have been incorporated in the main development
branch and released in the latest COMPSs version 3.0 and 3.1. We have also created RPM
packages and container images to facilitate its installation and usage.

BLIS is the BLAS library used to provide applications the linear algebra functionalities that they
required. This library has been adapted to be used on each MEEP environment: first, we have
added support for execution of vector instructions based on the OpenMP SIMD directives and
second we provide a set of configurations for each of the MEEP computing platforms. Moreover,
we explored the use of this library with a mechanisms, based on OpenMP, to offload all BLIS
computations into the available platform accelerators. Specifically, we base this approach on

A '::'q" M E E MareNostrum Experimental D5.3v1.0 70 / 921

FrVLTY Exascale Platform

the target teams distribute for platforms characterized by a single accelerator and on the newly
proposed target spread construct that can be used to distribute work among a set of accelerators.

We have enabled the runtimes of TensorFlow Lite and Apache Spark for RISC-V architectures.
Moreover, Epistasia use-case for Spark can be run inside a singularity container. We have included
both runtimes as RPM packages. We have also enabled benchmarks for four deep neural networks
comprising 99% of the use-cases for deep learning. Finally Epistasia use-case can be offloaded
through numpy and BLIS, as most of the computational part is done through numpy.

Regarding container support, we have enabled the usage of most used container engines for the
RISC-V 64bits architectures and included in the MEEP OS distribution. We have created RPM
packages for Moby, the open source version of Docker, which is the most used container engine,
Podman a trending alternative for Docker and Singularity as the most used container engine in
HPC environments.

In Section 7.1 we have described the software components included in the MEEP software
stack that will allow to apply the proposed Performance Analysis Methodology to the different
benchmarks. This list of components includes Extrae, PAPI, and Libunwind. We have created
RPM packages for all of them, as it can be seen in Tables 9 and 10.

The system benchmarks are intended to understand the behaviour of all MEEP environments.
One of the benchmarks is called Stream and is used to benchmark the performance of the memory
architecture. The remaining system benchmarks, EPCC-OpenMP and EPCC-OpenMP/MPI, are
applied to understand the overheads of common HPC runtimes such as OpenMP and MPI.
The set of HPC benchmarks range from very simple and common HPC operations (RISC-V
benchmarks) and evolve to more complex and representative HPC workloads (HPL, HPGC,
FFTXLib, CloudMicrophysics and Advection-MPDATA). The goal is to understand the performance
of the applications on all MEEP environments by looking at different characteristics such as vector
instruction performance, multi-thread and multi-node executions.

Actually this goal could be extended to Workflow and Data Analytic benchmarks, although
in these cases we plan to check the performance in a higher level of abstraction, looking for
scalability tests and general characterization of these kind of workloads.

The MEEP project also envisioned a system with many accelerators, exposing a gap in the OpenMP
support for more than one device in the context of offloading. We proposed a new extension to
the OpenMP target model with the goal to reduce this gap. This proposal was shared with the
OpenMP committee.

10.1. Summary of releases

In this section we gather all the information about releases spreaded all along this document. In
addition we also include the specific type of release for each software item.

All the releases have been centralized into a unique web site: . Visitors may navigate among
its different sections and found the desired software component. There are three sections
specifically devoted to software:

e OS Layer: have the description to install the Operating System. It points to the different

A '::'q" M E E MareNostrum Experimental D5.3v1.0 71 / 921

FrVLTY Exascale Platform

https://release.meep-project.eu

Software Component IMG RPM SRC Docker

LLVM Compiler (Vector/SA) Yes - Yes riscvé64/fedora
LLVM Compiler Multi-device - - Yes

Ethernet driver Yes - -

Moby Yes Yes -

Podman - Yes -

Singularity - Yes -

Java Zero VM 11.x Yes - - riscvé64/fedora
Java Server JIT Yes Yes - riscv64/fedora
Python 3.x Yes - - riscvé64/fedora
Libunwind Yes Yes -

Table 9: List of fundamental packages

files needed for that process.

e Toolchain: have the list of software components that could be installed in the system:
compiler, runtimes, and libraries.

e Benchmarks: have the list of workloads tested in the project and provided for reproducibility
purposes.

For each entry in the release website, the content will direct the visitor to the corresponding
releases. As described in the Section 2.1 they could be any of the following options:

e included in the OS image,

e a source code repository,

¢ an installabe RPM package, or
e included in a docker image.

In certain cases, there will be multiple of these options available. For instance, the Extrae
package could be already included in the Operating System default image, but also available
as an independent RPM package, so any update happening in this package could be updated
by running the yum command better that downloading again the full Operating System image.
Tables 9, 10, and 10.1 summarizes the types of releases available for each software component.

A '::'q" M E E MareNostrum Experimental D5.3v1.0 72 / 921

FrVLTY Exascale Platform

Software Component

COMPSs
TF Lite
Apache Spark

MPICH

BLIS (self-hosted)
BLIS (spread)
Extrae

PAPI

PAPI LW

PAPI LW (vhwc)

Software Component
Dislib

Epistasia (Spark)
TFLite Benchmakrs
RISC-V Benchmarks
HPCG

HPL

FFTXIlib

EPCC Benchmarks
MPI Benchmarks
Stream

- L g
il MEE
- 1' W %

IMG

Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

RPM

Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes

Docker

riscvé64/compss
riscvé4/tflite
riscv64/spark

riscv64/fedora

Table 10: List of runtimes and libraries

IMG

RPM

pip
Yes
Yes

SRC

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Docker

riscv64/compss
riscvé4/spark

riscvé64/tflite

Table 11: List of benchmarks

MareNostrum Experimental
Exascale Platform

D5.3v1.0

73 / 91

11. List of Acronyms

Al Artificial Intelligence

APl Application Programming Interface
BLAS Basic Linear Algebra Services
BSC Barcelona Supercomputing Center
CGMT Coarse-Grain Multithreading
CoE Center of Excellence

CPU Central Processing Unit

DA Data Analytics

DL Deep Learning

DoA Description of Action (Annex 1 of the Grant Agreement)
DMA Direct Memory Access

DTB Device Tree Blob

DTS Device Tree Source

Dx.y (MEEP) Deliverable, where x is the WP, and y is the document id within the WP

EA Emulated Accelerator

EPI European Processor Initiative
FGMT Fine-Grain Multi-Threading
FPGA Field Programmable Gate Array
GB Gigabyte, 10° bytes

GPU Graphics Processing Unit

GiB Gibibit, 23° bits

HBM High Bandwidth Memory

HPC High Performance Computing
HPCG High Performance Conjugate Gradient
HPDA High Performance Data Analytics

HPL High Performance Linpack

A ,::l:' M E E MareNostrum Experimental D53 Vlo

LA ALY Exascale Platform

74 / 91

HSS Hart software Services

ISA Instruction Set Architecture

JIT Justin Time (compilers)

MC Memory Controller

MEEP MareNostrum Experimental Exascale Platform

Mnn (MEEP) Project Month, where nn is a numerical value
MSn (MEEP) Project Milestone, where n is a numerical value
ML Machine Learning

NIC Network Interface Card

NVRAM Non-volatile Random Access Memory (e.g., 3D XPoint)
OAIl Open Accelerator Infrastructure

OAI-OAM Open Accelerator Infrastructure OCP Accelerator Module
OAM Open Compute Accelerator Module

OCP Open Compute Project

ONIC Open NIC

OO0 Out of Order (CPU)

OS Operating System

PGAS Partitioned Global Address Space

POP2 Performance Optimisation and Productivity

QDMA Queue Direct Memory Access (Xilinx)

ROM Read-Only Memory

RTL Register Transfer Level (Hardware Description Language)
SA Systolic Array

SBI Supervisor Binary Interface

SCIF Symmetric Communication Interface

SD Secure Digital (card)

SDK Software Development Kit

A '::'q" M E E MareNostrum Experimental D5.3v1.0

FrVLTY Exascale Platform

75 / 91

SIMD Single Instruction Multiple Data
SoC System on Chip

TPU Tensor Processing Unit

TCG Tiny Core Generator

UBB Universal Base Board

VOP Virtio Over PCle

VPU Vector Processing Unit

WP Project Work Package

SN ""::Q:' M E E MareNostrum Experimental D5.3v1.0 76 / 91

Exascale Platform

12. References

[1] Dimemas. https://tools.bsc.es/dimemas. Accessed: 2022-11-07.

[2] . European processor initiative. https://www.european-processor-initiative.eu/.
Accessed: 2021-07-08.

[3] libunwind. https://www.nongnu.org/libunwind/. Accessed: 2022-11-08.

[4] Paraver. https://tools.bsc.es/paraver. Accessed: 2022-11-08.

[5] Pop. https://pop-coe.eu/. Accessed: 2022-11-07.

[6] Quantum espresso. https://www.quantum-espresso.org/. Accessed: 2022-09-20.
[7] Xnnpack. https://github.com/google/XNNPACK. Accessed: 2022-11-11.

[8] A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary. Hpl - a portable implementation of the
high-performance linpack benchmark for distributed-memory computers. https://wuw.
netlib.org/benchmark/hpl/. Accessed: 2021-07-08.

[9] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A, Irving, G,, Isard, M., Jia, Y.,
Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray,
D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, |., Talwar, K., Tucker, P., Vanhoucke,
V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[10] Adams, D. The hitchhiker's guide to the galaxy. Greatest Book Ever Written (GBEW), Oct.
1979.

[11] Apache Software Foundation. Apache spark: Unified engine for large-scale data analytics.
https://spark.apache.org. Accessed: 2022-12-07.

[12] Apache Software Foundation. Tensorflow for mobile and edge. https://www.tensorflow.
org/lite. Accessed: 2022-12-07.

[13] Ayers, G., Litz, H., Kozyrakis, C., and Ranganathan, P. Classifying memory access patterns for
prefetching. In Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (New York, NY, USA, 2020), ASPLOS 20,
Association for Computing Machinery, p. 513-526.

[14] Barcelona Supercomputing Center. Cluster analysis. https://tools.bsc.es/
cluster-analysis. Accessed: 2021-10-25.

[15] Barcelona Supercomputing Center. Extrae. https://tools.bsc.es/extrae. Accessed:
2022-11-08.

[16] Barcelona Supercomputing Center. Folding: Detail performance evolution. https://tools.
bsc.es/folding. Accessed: 2021-10-25.

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 77 / 21

LA ALY Exascale Platform

https://tools.bsc.es/dimemas
https://www.european-processor-initiative.eu/
https://www.nongnu.org/libunwind/
https://tools.bsc.es/paraver
https://pop-coe.eu/
https://www.quantum-espresso.org/
https://github.com/google/XNNPACK
https://www.netlib.org/benchmark/hpl/
https://www.netlib.org/benchmark/hpl/
https://spark.apache.org
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://tools.bsc.es/cluster-analysis
https://tools.bsc.es/cluster-analysis
https://tools.bsc.es/extrae
https://tools.bsc.es/folding
https://tools.bsc.es/folding

[17] Barcelona Supercomputing Center-Centro Nacional de Supercomputacion. Risc-v bench-
marks. https://gitlab.bsc.es/benchmarks/risc-v-benchmarks.git/. Accessed:
2022-11-10.

[18] Bull, J. M. Measuring synchronisation and scheduling overheads in openmp. In Proceedings
of First European Workshop on OpenMP (1999), pp. 99-105.

[19] Bull,J. M., Enright, J. P,, and Ameer, N. A microbenchmark suite for mixed-mode openmp/mpi.
In Evolving OpenMP in an Age of Extreme Parallelism (Berlin, Heidelberg, 2009), M. S. Miller,
B. R. de Supinski, and B. M. Chapman, Eds., Springer Berlin Heidelberg, pp. 118-131.

[20] Bull, J. M., and O'Neill, D. A microbenchmark suite for openmp 2.0. SIGARCH Comput. Archit.
News 29, 5 (dec 2001), 41-48.

[21] Field G. Van Zee and Robert A. van de Geijn. Blis repository. https://github.com/flame/
blis. Accessed: 2022-11-07.

[22] Frigo, M., and Johnson, S. G. The design and implementation of FFTW3. Proceedings of
the IEEE 93, 2 (2005), 216-231. Special issue on “Program Generation, Optimization, and
Platform Adaptation”.

[23] Gianmarco Mengaldo. Batch 1: Definition of several weather & climate dwarfs. http://www.
hpc-escape.eu/media-hub/escape-pub/escape-deliverables. Accessed: 2022-08-01.

[24] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition, 2015.

[25] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., and Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision
applications, 2017.

[26] J. Dongarra, P. Luszczek, M. Heroux, K. Ye. Hpcg benchmark. https://hpcg-benchmark.
org. Accessed: 2022-09-20.

[27] J. M. Bull, F. R., and McDonnell, N. A microbenchmark suite for openmp tasks. In Proceedings
of the 8th international conference on OpenMP in a Heterogeneous World (IWOMP '12) (2012),
pp. 271-274.

[28] John D. McCalpin, Ph.D. Stream: Sustainable memory bandwidth in high performance
computers. https://www.cs.virginia.edu/stream/. Accessed: 2022-06-09.

[29] Lecun,Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86, 11 (1998), 2278-2324.

[30] Lordan, F.,, Tejedor, E., Ejarque, J., Rafanell, R., Alvarez, J., Marozzo, F., Lezzi, D., Sirvent, R.,
Talia, D., and Badia, R. M. ServiceSs: an interoperable programming framework for the
Cloud. Journal of Grid Computing 12, 1 (2014), 67-91.

[31] MEEP. Cloudmicrophysics bug report. https://gitlab.
bsc.es/meep/common-dashboard/wpb-software-stack/uploads/
91ed32d1f4a429be23b6f120d5e59e62/cloudmicrophysics-bug-report.pdf. Accessed:
2022-12-27 (confidential).

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 78 / 21

LA ALY Exascale Platform

https://gitlab.bsc.es/benchmarks/risc-v-benchmarks.git/
https://github.com/flame/blis
https://github.com/flame/blis
http://www.hpc-escape.eu/media-hub/escape-pub/escape-deliverables
http://www.hpc-escape.eu/media-hub/escape-pub/escape-deliverables
https://hpcg-benchmark.org
https://hpcg-benchmark.org
https://www.cs.virginia.edu/stream/
https://gitlab.bsc.es/meep/common-dashboard/wp5-software-stack/uploads/91ed32d1f4a429be23b6f120d5e59e62/cloudmicrophysics-bug-report.pdf
https://gitlab.bsc.es/meep/common-dashboard/wp5-software-stack/uploads/91ed32d1f4a429be23b6f120d5e59e62/cloudmicrophysics-bug-report.pdf
https://gitlab.bsc.es/meep/common-dashboard/wp5-software-stack/uploads/91ed32d1f4a429be23b6f120d5e59e62/cloudmicrophysics-bug-report.pdf

[32] MEEP Consortium. Deliverable d5.1: Benchmark suite.

[33] MEEP Consortium. Deliverable d5.2: Linux with initial host interface release, based on the
requirements document.

[34] MEEP Consortium. Deliverable d6.3: Emulated accelerator second release with full capability
of inter-accelerator communication.

[35] NumPy. Numpy. https://numpy.org. Accessed: 2022-12-07.

[36] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-scale image
recognition, 2014.

[37] Terpstra, D., Jagode, H., You, H., and Dongarra, J. Collecting performance data with papi-c.
In Tools for High Performance Computing 2009 (Berlin, Heidelberg, 2010), M. S. Milller, M. M.,
Resch, A. Schulz, and W. E. Nagel, Eds., Springer Berlin Heidelberg, pp. 157-173.

[38] Van Zee, F. G,, and van de Geijn, R. A. BLIS: A framework for rapidly instantiating BLAS
functionality. ACM Transactions on Mathematical Software 41, 3 (June 2015), 14:1-14:33.

A ,::l:' M E E MareNostrum Experimental D5.3v1.0 79 / 21

LA ALY Exascale Platform

https://numpy.org

A. Systolic Array Specification

This appending includes the current version of the MEEP Systolic Array specification.

‘:‘"..‘f""'f:':" M E E MareNostrum Experimental D5.3v1.0 80 / 91

Exascale Platform

MEEP Systolic Array
Extension

Version 0.6.2

Table of Contents

1. Introduction
1.1.ISA name
2. MEEP SA Programmer Model
2.1. Systolic Array Identification
2.2. Systolic Registers
2.3. Systolic Specific Registers
2.4. Systolic Array Status, sastatus.<n>
3. Systolic Array Instruction Formats
3.1. SACFG formats
3.2. SAQP format
3.3. SAMEM formats
4. Common instructions
4.1. Set operational length
4.2. Set Systolic Specific Registers
4.3. Memory accesses
4.4. Generic operation
5. HEVC Imaging Accelerator
5.1. Identifier
5.2. Operations
6. Neural Network Inference Accelerator
6.1. Identifier
6.2. Specific operations

1. Introduction

This is the MEEP Systolic Array Extension (MEEP SA). This is an extension of the RISC-V ISA intended to offer an instruction
level interface to systolic array operation as envisioned in the context of the MEEP project.

This ISA extension depends on the Vector Extension (V) ISA being available.

This extension models the access to the systolic array functionality similarly to that of a coprocessor.

Note | The MEEP SA requires at the very least a base RISC-V implementation of RV64IMV.

1.1. ISA name

This extension is named meepsa. Given that it is a nonstandard extension, the ISA specification is Xmeepsa. For instance a
Linux capable 64-bit CPU that implements the V extension 0.7.1 and the MEEP Systolic Array could be named
RV64GC_VOp7_Xmeepsa.

2. MEEP SA Programmer Model

The MEEP SA extension provides an instruction-based interface for the 2 systolic arrays considered in the MEEP project.
Each systolic array is assigned an identifier 0 or 1 which is used to identify the architectural state of each systolic array. This
identifier is generically noted in this specification using <n> notation.

This extension adds 31 systolic registers per systolic array to the base scalar RISC-V ISA of size SALEN . <n>. The extension
also adds three unprivileged CSRs sastatus.<n>, saoplen.<n>.0, saoplen.<n>.1 of size XLEN bits.

Table 1. New systolic CSRs

Address Privilege Name Description

0x8D0O+n URW sasatus.<n> Systolic array status

0x8D2+n URW saoplen.<n>.0 Systolic array operational length 0.
0x8D4+n URW saoplen.<n>.1 Systolic array operational length 1.

The value of saoplen.<n>.<m> is always zero or positive magnitude smaller or equal to SALEN.<n>/ 8.

Note | Two operational lengths are specified for systolic arrays that operate with bidimensional data.

2.1. Systolic Array Identification

All the instructions in this extension are executed under the context of a specific systolic array. There is a systolic array
identifier of 1 bit called said which is encoded in the instructions.

This extension supports up to 2 systolic arrays at the same time in the same system. A systolic array may not have a use for

Note | saoplen.<n>.1 in which case it is assumed to be hardcoded to value 1. Also in this case sastatus.<n>.illoplen.1 may be set
to 1 if the value configured in saoplen.<n>.1is not 1.

2.2, Systolic Registers

The MEEP SA extension adds 31 architectural systolic registers sa.<n>.0-sa.<n>.30 to the base scalar RISC-V ISA. Their
size is SALEN. <n> bits.

Systolic registers are logically divided in elements of 8-bit size, numbered from 0 to SALEN.<n>/ 8.

The assembly syntax does not use the systolic identifier in the systolic register names because the instruction already establishes the

Note | context. Their names in the assembly syntax are sa@ to sa31.

The registers are only divided in elements of size byte for semantic purposes. An implementation may group the elements and
require saoplen.<n>.<m> be a multiple of that group size.

Note
2.3. Systolic Specific Registers

A systolic array may define few systolic-specific registers (ssr). Those registers have XLEN size and and are not exposed to
the rest of the architecture.

2.4. Systolic Array Status, sastatus.<n>

This CSR contains the operational state of a specific systolic array. This is a read-only register.

This specification defines the following bits in this CSR.

Table 2. sastatus.<n> register layout

Bits| Name Description
63:32 | implementation Implementation-defined status of the SA
31:4 | reserved Reserved for the MEEP-SA spec
4 | sastatus.<n>.illoplen.1 The SA cannot operate under the given operational length 1
3 | sastatus.<n>.illoplen.® The SA cannot operate under the given operational length 0
2 | sastatus.<n>.busy The SA is operating
1 | sastatus.<n>.ready The SA is ready to accept an operation
0 | sastatus.<n>.enabled The SA is enabled and can execute operations

Note | Some of those fields may not be needed and will be removed.

sastatus.<n>.enabled establishes that operations for the systolic array <n> can be executed by the instruction. When
this bit is set to zero a systolic array instruction directed to the systolic array <n> will cause an illegal instruction fault.

sastatus.<n>.ready establishes that a systolic array can accept new operation requests. When this bit clear the
execution of a systolic array must behave like a no-operation. A systolic array implementation may choose to always
present this bit as set and stall the execution of an instruction until it can accept it.

sastatus.<n>.busy establishes that a systolic array is operating. This status is purely informational and does not have
functional consequences for the software.

sastatus.<n>.illoplen.<m> establishes that a systolic array was requested an operational length that is not valid.
These bit are modified by the instructions sa.setopleniand sa.setoplen.

Bits 31:4 are reserved for further extensions of MEEP-SA. These bits should be left cleared.

Bits 63:32 are reserved for the implementation. Their allowable values are implementation-defined but must include an all-
zeros valid setting.

3. Systolic Array Instruction Formats

This specification defines the following instruction formats.

This extension uses the major opcode custom-1 as defined in the RISC-V Instruction Set Manual. This means that
Note| inst[6:0]=0101011.

3.1. SACFG formats
3.1.1. SACFG.i
31 27 26 25 24 20 19 15 14 12 1 7 6 0
0O 0 O 0 o |said| 1 | sacsr zimm([4:0] | 1 1 1 rd 0 1 o 1 0 1 1
i sacfg custom-1
3.1.2. SACFG.r
31 27 26 25 24 20 19 15 14 12 1 7 6 0
0 0 0 0 0 |said| 0 | sacsr rs1 1 1 1 rd 0 1 0 1 0 1 1
r sacfg custom-1

3.2. SAOP format

This is the format for operations that are going to be carried out by the Systolic Array.

31 27 26 25 24 20 19 15 14 13 12 1 7 6 0
| sasrc3/sadst2 |said| nd| sasrc2 sasrc1 | op[0:1] | 0 | sadst1 0 1 o 1 0 1 1
saop custom-1
3.3. SAMEM formats
3.3.1. SAMEM.L format
31 29 28 27 26 25 22 21 20 19 15 14 12 N 7 6 0
0 0 0 | opdim |said| 0 0 0 0 | esize | rs1 0 0 1 sadest 0 1 0 1 0 1 1
element size address samem.load destination of load custom-1
3.3.2. SAMEM.S format
31 29 28 27 26 25 22 21 20 19 15 14 12 1 7 6 0
0 0 0 | opdim |said| 0 0 0 0 | esize | rs1 0 1 1 sasrc 0 1 0 1 0 1 1

element size address samem.store source of store custom-1

4. Common instructions

The instruction interface defines a set of common instuctions that are available for all the systolic arrays.

A systolic array register operand sa.<n>.<m> is encoded in a 5-bit field using the binary encoding of <m>.

Note | ®@b11111 is not a valid encoding for a systolic array register.

4.1. Set operational length

Instruction sa.setopleni.<n>.<m> rdest, zimm5 is used to set the operational length m of a systolic array.

There is a register form of this instruction sa.setoplen.<n>.<m> rdest, rs1. The value of the operational length <m>
is set from the value in the the register rsrc1.

Both instructions are encoded with the SACFG format. sa.setopleni.<n>.<m>is encoded using the SACFG. i format.
sa.setoplen.<n>.<m>is encoded using the SACFG. r format.

Table 3. sacsr field encoding

Register| sacsr Notes

0b00LO0 | sastatus.<n>.0 Not a valid operand of sa.setoplen/sa.setopleni.

0booo01 | saoplen.<n>.0

0b00010 | saoplen.<n>.1

0bOxxxx | Reserved encoding.

Designates ssr identified by Not mandatory to be a valid operand for sa.setoplen/
nnnn. sa.setopleni.

@b1nnnn

4.1.1. Assembly syntax

sa.setopleni.<n>.<m> rd, zimm5
sa.setoplen.<n>.<m> rd, rsi

4.1.2. Semantics

If the systolic array does not support the operational length of the zimm5 operand (or the value in register rs1), then
sastatus.<n>.illoplen.<m>is setto 1 and saoplen.<n>.<m> is set to zero.

Otherwise sastatus.<N>.illoplen.<m>is set to 0 and saoplen.<n>.<m> is set to the XLEN zero-extended value of
zimm5 operand.

The determined value of saoplen.<n>.<m> is returned in register rd.
Note | Decide if we want to provide a mechanism in which the SA allows the software to obtain a valid operational length.

4.2. Set Systolic Specific Registers

This is encoded using the SACFG format where rdest is x0 and sacsr is a value ranging 6b10000 to 8b11111. Both
SACFG. i and SACFG. r formats can be used. SACFG. i zero extends to XLEN its immediate operand.

4.2.1. Assembly syntax

sa.setssr.<n> <ssr-id>, zimm5
sa.setssr.<n> <ssr-id>, rsi

ssr-idis an immediate ranging from 0 to 15 that is encoded in the field sacsr as @b10000 + ssr-id.
4.2.2. Semantics

If ssr-idis not a valid systolic-specific register for the systolic array <n> or rdest is not 8b000080 this instruction causes
an illegal instruction.

Otherwise the value designated by the operand in rs1 or the zero extended value to XLEN of zimm5 is set to the systolic-
specific register of <n> designated by ssr-id.

4.3. Memory accesses

Instruction sa.load<dim>.<n> is used to load data in memory to the systolic registers. This instruction is encoded using
the SAMEM. L format.

Instruction sa.store<dim>.<n> is used to store data in systolic arrays to memory. This instruction is encoded using the
SAMEM. S format.

4.3.1. Assembly syntax

sa.load1d@.<n>.<esize> sadest, (rs1)
sa.load1d1.<n>.<esize> sadest, (rs1)
sa.load2d@x1.<n>.<esize> sadest, (rs1)
sa.store1d@.<n>.<esize> sasrc, (rs1)
sa.storeld1.<n>.<esize> sasrc, (rs1)
sa.store2d@x1.<n>.<esize> sasrc, (rs1)

4.3.2. Semantics

The amount of data transferred from/to memory is specified by the <opdim> operand.

Table 4. opdim field encoding

Assembly opdim[1:0] |Data transferred
1de 0b00 | saoplen.<n>.0 elements
1d1 0b0O1 | saoplen.<n>.1 elements
2dox1 0b10 | saoplen.<n>.0 times saoplen.<n>.1
0b11 | Reserved encoding. Unused.

sa.load<opdim>.<n>.<esize> transfers opdim times esize consecutive bytes starting from the address at rs1 into
consecutive elements (starting from element numbered 0) of register sadest.

sa.store<opdim>.<n>.<esize> transfers opdim consecutive number of elements of size esize bytes (starting from
element numbered 0) from register sasrc to consecutive memory addresses starting from address at rs1.

Table 5. esize field encoding

esize[1:0] Assembly Value (bytes) | Description
0boo e8 1 | Elements of 8-bit
0bo1 el16 2 | Elements of 16-bit
0b10 e32 4 | Elements of 32-bit
0b11 e64 8 | Elements of 64-bit

Note | A systolic array may require rs1 be an aligned memory address depending on the value of esize.

Note | Not all the values of esize must be supported by a systolic array.

esize value must allow opdim elements be representable in a systolic register otherwise the instruction yields illegal
instruction.

4.4. Generic operation
Instruction sa.op.<n>is used to trigger an operation of the systolic array.

4.4.1. Assembly syntax

sa.op11.<n>.<op> sadst1, sasrci
sa.op12.<n>.<op> sadstl1, sasrcl, sasrc2
sa.op13.<n>.<op> sadstl1, sasrcl, sasrc2, sasrc3
sa.op22.<n>.<op> sadst1, sadst2, sasrcl, sasrc2
The two forms exists to accomodate two inputs and two outputs and three inputs and one output operations.

When a systolic array register operand is not present in the instruction, its encoding is 8b11111.

Field nd encodes the numer of destination registers. 8b@ is one destination register and b1 encodes two destination
registers.

4.4.2. Semantics

The meaning of the operation <op> is implementation-defined by the systolic array <n>. The systolic array expresses the
operation in terms of the values of the different source operand registers and the values of saoplen.<n>.<m>.

Note | Systolic-specific registers can participate as input operands of the operation.

5. HEVC Imaging Accelerator

5.1. Identifier
The systolic array identifier for the HEVC Imaging Accelerator is 0.

5.2. Operations

op[1:0] Description
oboe Computes something
0bo1 Computes something else

10

6. Neural Network Inference Accelerator

6.1. Identifier

The systolic array identifier for the Neural Network Inference Accelerator is 1.

6.2. Specific operations

op[1:0] |Assembly

Description

0boo sa.op.1.noact sadstl1, sasrcl, sarc2, sasrc3 No activation function.
0bo1 sa.op.1.crelu sadst1, sasrcl, sarc2, sasrc3 Activation function is ReLU.
ob10

sa.op.1.htanh sadst1, sasrc1, sarc2, sasrc3

Activation function is hyperbolic tangent.

11

	Executive Summary
	Operating System
	Compiler support
	Runtimes and libraries
	Containerization support
	Benchmark descriptions
	Offload mode and multi-devices
	Software distribution: releases

	Introduction
	Type of releases
	Execution modes

	Operating System
	Driver for Ethernet over PCIe
	Integrating the ONIC driver on QDMA
	Developing the RISC-V driver counterpart

	Driver for 10Gbit Ethernet over QSFP
	Driver for 100Gbit Ethernet over QSFP

	Compiler support
	Infrastructure
	RISC-V Vector Extension optimisations
	Prefetching
	Loop transformations for temporal locality

	Systolic Array
	Multi-devices support

	Runtimes and Libraries
	Message Passing Interface
	OpenMP runtime
	COMPSs runtime
	TensorFlow Lite framework
	Spark framework
	BLIS library
	Numpy

	Container support
	Enabling container support on ACME-EA
	Working with distributed applications
	Container releases

	Performance Analysis Methodology
	Profiling support
	Extrae
	libunwind
	Enabling hardware counters

	POP Methodology
	Vector methodology
	Validation with sample codes

	Benchmarks description
	System benchmarks
	Stream
	EPCC-OpenMP
	EPCC-OpenMP/MPI

	HPC benchmarks
	RISC-V Benchmarks
	HPL
	HPCG
	FFTXlib
	CloudMicrophysics
	Advection-MPDATA

	Data Analytics benchmarks
	TensorFlow Lite models
	Spark Epistasis use case

	Workflows benchmarks
	Dislib Algorithms
	Hyper-Dimensional Computing (HDC)

	Systolic Array benchmarks

	The MEEP Offload Mode
	Single-device support
	Compiler support for MEEP offload
	Runtime support for MEEP offload
	RISC-V side offload support
	Testing
	BLIS single-device approach

	Multi-device support
	OpenMP extensions
	Compiler support for multi-devices
	Middle-ware extensions
	BLIS multi-device approach
	Impact on OpenMP

	Conclusions
	Summary of releases

	List of Acronyms
	References
	Systolic Array Specification

