
D5.3 – APPLICATIONS PORTED (FULL

SOFTWARE-STACK)

Version 1.0

Document Informa on

Contract Number 946002

Project Website https://meep-project.eu

Contractual Deadline 31/12/2022

Dissemina on Level Public (PU)

Nature Report (R)

Authors Xavier Teruel (BSC), Roger Ferrer (BSC), XavierMartorell (BSC), Jorge

Ejarque (BSC), Pere Verges (BSC), Julian Morillo (BSC), Manuel Ro-

drigues (BSC), Aaron Call (BSC).

Contributors Rosa M. Badia (BSC), Josep Ll. Berral (BSC).

Reviewers John D. Davis (BSC), Eduard Ayguadé (BSC).

The MEEP project has received funding from the European High-Performance Compu ng Joint

Undertaking under grant agreement No 946002. The JU receives support from the European Union

s Horizon 2020 research and innova on programme and Spain, Croa a, Turkey.

© 2020 MEEP. The MareNostrum Experimental Exascale Pla orm. All rights reserved.

https://meep-project.eu

Change Log

Version Author Descrip on of Change

v0.1 Xavier Teruel Ini al dra structure.

v0.2 Manuel Rodrigues, Julian Morillo Run mes, and benchmark descrip ons. Perfor-

mance Methodology updates

v0.5 Various Authors Including contents for: compilers, containers, li-

braries, and offload-mode. Document structure

changes.

v0.7 Various Authors Including contents for: introduc on, compilers,

opera ng system, benchmarks. Dra ing execu-

ve summary. Table of releases.

v0.9 Various Authors Comple ng Opera ng System, Execu ve sum-

mary, Mul -devices, and Conclusions. Minor ed-

its.

v1.0 Various Authors Applying internal review feedback

D5.3 v1.0 2 / 91

COPYRIGHT

© Copyright by the MEEP consor um, 2020

This document contains material, which is the copyright of MEEP Consor um members and

the European Commission, and may not be reproduced or copied without permission, except

as mandated by the European Commission Grant Agreement no. 946002 for reviewing and

dissemina on purposes.

ACKNOWLEDGEMENTS

The MEEP project has received funding from the European High-Performance Compu ng Joint

Undertaking (JU) under grant agreement No 946002. The JU receives support from the European

Union’s Horizon 2020 research and innova on programme and Spain, Croa a, Turkey.

The partners in the project are BARCELONASUPERCOMPUTINGCENTER -CENTRONACIONAL

DE SUPERCOMPUTACION (BSC), FACULTYOFELECTRICALENGINEERINGANDCOMPUTING,

UNIVERSITYOF ZAGREB (UNIZG-FER), & THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH

COUNCIL OF TURKEY, INFORMATICS AND INFORMATION SECURITY RESEARCH CENTER

(TÜBİTAK BILGEM).

The content of this document is the result of extensive discussionswithin theMEEP©Consor um

as a whole.

DISCLAIMER

The content of the publica on herein is the sole responsibility of the publishers and it does not

necessarily represent the views expressed by the European Commission or its services. The

informa on contained in this document is provided by the copyright holders ”as is” and any express

or implied warran es, including, but not limited to, the implied warran es of merchantability

and fitness for a par cular purpose are disclaimed. In no event shall the members of the MEEP

collabora on, including the copyright holders, or the European Commission be liable for any direct,

indirect, incidental, special, exemplary, or consequen al damages (including, but not limited to,

procurement of subs tute goods or services; loss of use, data, or profits; or business interrup on)

however caused and on any theory of liability, whether in contract, strict liability, or tort (including

negligence or otherwise) arising in any way out of the use of the informa on contained in this

document, even if advised of the possibility of such damage.

D5.3 v1.0 3 / 91

Index

1 Execu ve Summary 6

1.1 Opera ng System . 6

1.2 Compiler support . 6

1.3 Run mes and libraries . 7

1.4 Containeriza on support . 7

1.5 Benchmark descrip ons . 8

1.6 Offload mode and mul -devices . 8

1.7 So ware distribu on: releases . 8

2 Introduc on 10

2.1 Type of releases . 10

2.2 Execu on modes . 11

3 Opera ng System 12

3.1 Driver for Ethernet over PCIe . 12

3.1.1 Integra ng the ONIC driver on QDMA . 12

3.1.2 Developing the RISC-V driver counterpart 13

3.2 Driver for 10Gbit Ethernet over QSFP . 13

3.3 Driver for 100Gbit Ethernet over QSFP . 13

4 Compiler support 15

4.1 Infrastructure . 15

4.2 RISC-VVector Extension op misa ons . 15

4.2.1 Prefetching . 15

4.2.2 Loop transforma ons for temporal locality 16

4.3 Systolic Array . 18

4.4 Mul -devices support . 19

5 Run mes and Libraries 20

5.1 Message Passing Interface . 20

5.2 OpenMP run me . 20

5.3 COMPSs run me . 20

5.4 TensorFlow Lite framework . 21

5.5 Spark framework . 22

5.6 BLIS library . 22

5.7 Numpy . 24

6 Container support 25

6.1 Enabling container support on ACME-EA . 25

6.2 Working with distributed applica ons . 25

6.3 Container releases . 26

7 Performance Analysis Methodology 27

7.1 Profiling support . 27

7.1.1 Extrae . 27

7.1.2 libunwind . 29

7.1.3 Enabling hardware counters . 30

D5.3 v1.0 4 / 91

7.2 POPMethodology . 31

7.3 Vector methodology . 34

7.3.1 Valida on with sample codes . 36

8 Benchmarks descrip on 41

8.1 System benchmarks . 41

8.1.1 Stream . 41

8.1.2 EPCC-OpenMP . 43

8.1.3 EPCC-OpenMP/MPI . 47

8.2 HPC benchmarks . 48

8.2.1 RISC-V Benchmarks . 49

8.2.2 HPL . 50

8.2.3 HPCG . 51

8.2.4 FFTXlib . 52

8.2.5 CloudMicrophysics . 53

8.2.6 Advec on-MPDATA . 53

8.3 Data Analy cs benchmarks . 54

8.3.1 TensorFlow Lite models . 54

8.3.2 Spark Epistasis use case . 56

8.4 Workflows benchmarks . 57

8.4.1 Dislib Algorithms . 57

8.4.2 Hyper-Dimensional Compu ng (HDC) . 59

8.5 Systolic Array benchmarks . 60

9 The MEEP Offload Mode 61

9.1 Single-device support . 61

9.1.1 Compiler support for MEEP offload . 61

9.1.2 Run me support for MEEP offload . 61

9.1.3 RISC-V side offload support . 63

9.1.4 Tes ng . 63

9.1.5 BLIS single-device approach . 63

9.2 Mul -device support . 66

9.2.1 OpenMP extensions . 66

9.2.2 Compiler support for mul -devices . 67

9.2.3 Middle-ware extensions . 68

9.2.4 BLIS mul -device approach . 68

9.2.5 Impact on OpenMP . 69

10 Conclusions 70

10.1 Summary of releases . 71

11 List of Acronyms 74

12 References 77

A Systolic Array Specifica on 80

D5.3 v1.0 5 / 91

1. Execu ve Summary

This document presents all the current releases of the MEEP So ware Stack. It includes all the

levels involved in the toolchain as well as the target benchmarks we plan to evaluate at the end of

the project. As described in previous deliverables, the ACME EA pla orm can be used following

two different approaches: 1) A stand-alone processor/accelerator boo ng Linux (ie, self-hosted);

2) A suppor ng accelerator device a ached to a host (ie, offloading). The document focuses on

the self-hosted mode, while we also explore the opportuni es of the offload mode. When no

explicitly specified, the contents will refer to the self-hosted mode.

The Opera ng System, compiler, run mes, and containeriza on support were already introduced

in deliverable D5.2 Linux with ini al host interface release, based on the requirements document [33].

The set of benchmarks was also introduced in deliverable D5.1 Benchmark suite of HPC applica-

ons [32].

The integra on of all these components aim to allow ACME EA programmers to exploit all the

system capabili es, being able to deploy their own use cases, and to obtain useful informa on

to infer the performance behaviour. As described in the Descrip on of Ac on (DoA): ”all the

applica on that have been iden fed are ported to run on top of the emula on pla orm”; and for each

applica on’s entry we also describe the metric of interest and its evalua on methodology (from

DoA: ”The final phase will focus on applica on performance evalua on and debugging”).

Following sec ons present a brief summary of the status of these components at the current

stage of the project.

1.1. Opera ng System

The Opera ng System presents the updates on the support for communica on with the driver

for Ethernet over PCIe and the driver for Ethernet over QSFP. The PCIe uses the Xilinx QDMA

driver and the Xilinx Open NIC driver, both deployed on the host side; and the Xilinx Linux kernel,

on the RISC-V side. The QSFP driver allows FPGA to FPGA communica on and it has been

implemented based on the driver developed in the EPI project, with a DMA-based solu on and

the ability of sca er-gather.

1.2. Compiler support

The compiler includes the contribu on to the RISC-VVector Extensions, which target the VPU

accelerator and the Systolic Array extensions. With respect to the Vector Extension we have

explored to main lines: one based on assessing whether prefetching techniques are feasible to

inform the CPU about memory accesses of the vector code and another one exploi ng loop

transforma ons to improve the use of the vector registers. Although prefetching hints looked like

to be a reasonable mechanism to convey memory accesses (specifically about the vector length)

informa on to the vector processor, the results obtained from our implementa on suggest this is

not an effec ve way to inform the CPU about the memory characteris cs of vectorised code.

The loop transforma on techiques are s ll on development and we aim to impact on the locality

D5.3 v1.0 6 / 91

https://release.meep-project.eu

characteris cs of the computa onal kernels.

The Systolic Array extensions present a set of new custom instruc ons targe ng the Systolic Array

accelerators. It includes a set of new registers, and new computa onal and memory opera ons.

Both extensions have been implemented in the LLVM compiler and distributed as a source code

repository as well as a RPM Fedora package. The compiler distribu on also includes the OpenMP

run me library used to provide paralleliza on services to the OpenMP applica ons.

1.3. Run mes and libraries

The Linux distribu on includes several libraries to complete the HPC-AI ecosystem: the MPICH

MPI library, the COMPSs/PyCOMPSs workflows, the TensorFlow Lite and Apache Spark frame-

works, and the BLIS and NumPy libraries. All of them available as Fedora installable packages.

COMPSs [30] is a task-based programming model and run me system to implement parallel

distributed workflows. Supported applica ons are executed in a master-worker mode, where the

workflow is executed in the master process and the tasks are executed in the worker processes.

Apache Spark [11] is an open-source unified analy cs engine for large-scale data processing. It

provides an interface for programming cluster with implicit data parallelism and fault tolerance.

Either COMPSs or Apache Spark relies on top of the Java Virtual Machine (JVM), consequently

we have also included this component as part of the so ware stack.

TensorFlow [9] is a free and open-source so ware library for Machine Learning (ML) and Ar ficial

Intenlligence (AI) applica ons. TensorFlow Lite [12] provides the inference engine and it is

designed focusing on edge environments.

BLIS [38] is the linear algebra library we recommend in the MEEP ecosystem. We have adapted

it in order to exploit the vector capabili es of the system by extending the OpenMP annota on

to also target SIMD direc ves. We also put forward an explora on of this library with an offload

mechanism to execute BLIS services in environments that are characterized with one or mul ple

accelerators.

NumPy [35] is a Python package that has support for scientfic compu ng. It provides sup-

port for different mul dimensional objects, and mathema cal func ons. NumPy leverages the

op miza ons implemented in the aforemen oned custom BLIS library.

1.4. Containeriza on support

With respect to the containeriza on support, we have selected three container engines to validate

our work: Moby, Podman and Singularity. Moby is the open source version of the Docker stack,

which is the most popular container engine nowadays. Podman, also very popular, because it has

a compa ble interface with Docker. Finally, Singularity is the most popular container engine in

the HPC field because it allows tradi onal HPC resource managers and devices.

D5.3 v1.0 7 / 91

1.5. Benchmark descrip ons

We also layout a set of benchmarks that are used to analyse their behaviour on the available

MEEP environments. These benchmarks range from system benchmarks, such as Stream, EPCC-

OpenMP and EPCC-OpenMP/MPI to common HPC benchmarks: HPL, HPCG, FFTXLIB, Cloud-

Microphysics and Advec on-MPDATA [32].

In the Data Analy cs side, we include the TensorFlow Lite models, which are a set of Neural

Networks (NN) representa ve of the current Data Analy cs architectures. Among the set of

models we found: MNIST, VGG-19, NesNet50, and MobileNet. Besides the TensorFlow models

we also evaluate the Epistasis applica on running on top of the Apache Spark framework. The

applica on can be configured by means of different parameters which allow to run vectorial and

non-vectorial code, change the number of nodes, the problem size (and its internal par ons),

etc.

In the Workflow benchmarking side, we have two different workloads. One based on the

Distributed Compu ng Library (Dislib), another based on the Hyperdimensional Compu ng

framework. Both use cases leverages the COMPSs/PyCOMPSs run me and will allow to test the

behaviour of this kind of applica ons using the MEEP architectures.

1.6. Offload mode and mul -devices

This sec on refers to the offload mode.

We have implemented a prototype infrastructure suppor ng OpenMP offload between the

Intel Host, ac ng as the applica on runner, and the RISC-V on the FPGA, ac ng as the device

accelerator. Thus, the LLVM compiler is invoked to generate x86_64 code for the Host and

RISC-V rv64imafdc code for the accelerator (i.e. the target regions).

The support for OpenMP target on the Host side is implemented as a plugin to the libomptarget

library. In our case, we have adapted the plugin developed by FORTH in the EPI project to work

with the RISC-V accelerator on the FPGA.

One of the possible scenarios considered earlier in the MEEP project was that a single node could

offer many accelerators where work could be offloadd to. This led us to iden fy a gap in OpenMP

support for offloading. Aligned to this, we have proposed an extension to OpenMP in which we

introduce a new OpenMP construct called target spread. Instead of receiving a single device
clause, the spread construct has a devices clause which represents the set of devices that will
execute the offloaded region.

1.7. So ware distribu on: releases

One important aspect of the current so ware repor ng period is to make all the so ware stack

publicly available for downloading by means of releases. In the MEEP project the OS will be

distributed as binary images which can be installed on the development board.

Once the users have a boo ng Opera ng System running on the ACME EA pla orm, they will be

D5.3 v1.0 8 / 91

able to use other so ware components by means of three different types of releases: 1) Source

code repositories; 2) RPMs packages; and 3) Containerized images.

D5.3 v1.0 9 / 91

2. Introduc on

This document presents all the ini al releases of the So ware Stack components for the MareNos-

trum Experimental Exascale Pla orm (MEEP). It includes all the levels involved in the toolchain

(i.e., the Opera ng System, the compiler, and containeriza on support); as well as the applica ons,

benchmarks and kernels we plan to evaluate at the end of the project (i.e., system, HPC, Data

Analy cs, and workflows).

The Opera ng System, compiler and containerizaton support were already introduced in deliv-

erable D5.2 Linux with ini al host interface release, based on the requirements document. In this

document we will report the status at this stage of the project.

The set of benchmarks was already introduced in deliverable D5.1 Benchmark suite of HPC

applica ons. In this document we will establish the objec ves we plan to reach using them

in the MEEP Project (i.e., performance evalua on or co-design with hardware/compiler). Also,

for each of the componets targe ng the performance evalua on, we will describe the set of

metrics we want to acquire and which specific aspect of performance we want to test: memory,

compute, mul -thread, mul -process, or vectorial will be the most meaningful ones. We will

finally report any modifica on/por ng we have introduced in these codes in order to adapt them

for the purposes of the study or the execu on on the ACME pla orms.

2.1. Type of releases

One important aspect of the current so ware repor ng period is to make all the so ware stack

publicly available for downloading. This deliverable will describe, for each of the presented

so ware items, how they will be released.

The most important element on the So ware Stack is the Opera ng System. It includes the OSBI

and the File System based in the Fedora distribu on. In the MEEP project theywill be available as

binary images which can be installed on the development board. The released OSwill also contain

the fundamental packages recommended to work on top of the ACME EA pla orm. These files

can be found on the MEEP OS Layer, which also describes how these files can be installed.

Once the users have a boo ng Opera ng System running on the ACME EA pla orm, they will be

able to use other so ware components by means of three different types of releases:

• Source code repositories: from where users may download the code and build it in their

own pla orm.

• RPMs packages: that users may install or update from the repository sourced in their OS

Fedora distribu on.

• Docker images: that users may execute to use specific pre-configured so ware components

(eg, TF Lite).

D5.3 v1.0 10 / 91

https://release.meep-project.eu
https://release.meep-project.eu/os-layer.html

Figure 1: MEEP Execu on Modes: self-hosted vs offload.

2.2. Execu on modes

The ACME EA pla orm can be used following two different approaches (see D5.2 Linux with ini al

host interface release, based on the requirements document; Sec on 2.2):

1. A stand-alone processor/accelerator boo ng Linux (ie, self-hosted). In this execu on mode,

the ACME EA becomes part of the HPC cluster;

2. A suppor ng accelerator device a ached to a host. In this case the host becomes part of

the HPC cluster, and it offloads parts of the computa on to the ACME EA device.

Figure 1 illustrates these two approaches and how the HPC cluster is organized around the ACME

EA computa onal system. As described in the previous deliverable, the main objec ve of the

MEEP project is to target the self-hosted accelerator but it will also explore the offload execu on

mode and the opportuni es this approach enables.

The rest of this document is organized as follows: Sec ons 3 to 8 refer to the self-hosted mode

(ie, Opera ng System, Compiler, Run mes/Libraries, Containeriza on support, Performance

methodology, and Benchmarking), Sec on 9 describes all the components related with the MEEP

offload-mode, and Sec on 10 presents the conclusions and summarizes all the so ware releases.

D5.3 v1.0 11 / 91

3. Opera ng System

The informa on about the Opera ng System has been already presented in MEEP Deliverable

D5.2: Linux with ini al host interface release, based on the requirements document [33]:

• Linux kernel boot and the boot flow process for ACME

• The Buildroot, Debian and Fedora por ngs

• The ACME memory map, Pmem disk, and Tun-on-Map basic networking

In this deliverable we present the updates on the support for communica ons with the driver

for Ethernet over PCIe and the driver for 10/100Gbit Etherner over QSFP. More details of the

Ethernet implementa on can be found on Sec on 3 of the MEEP Deliverable D6.3: Emulated

accelerator second release with full capacity of inter-accelerator communica on [34].

3.1. Driver for Ethernet over PCIe

The FPGA infrastructure for ACME includes the IP dealing with the QDMA transac ons. This

infrastructure was ini ally only used to transfer the opera ng system and the filesystem im-

age to the board. Later on, we used it from the user-level to implement the Tun-on-mmap

communica ons, allowing a first implementa on of Ethernet over PCIe.

The next development has been to move that communica ons infrastructure inside the kernel.

This has been done in both sides, the host and the RISC-V. In order to do this, we used the

following pla orms:

• [Host side] The Xilinx QDMA driver source code (obtained from Xilinx DMA IP Drivers repo)

• [Host side] The Xilinx Open NIC driver source code (obtained from Xilinx Open NIC Driver

repo)

• [RISC-V side] The Xilinx Linux kernel source code (obtained from Xilinx Linux repo)

On the FPGA infrastructure we have included a memory area in the I/O space that provides

a non-cachable zone for data exchange between the QDMA driver on the host side, and the

RISC-V. This infrastructure is described in Sec on 4.1 of the MEEP Deliverable D6.3: Emulated

accelerator second release with full capacity of inter-accelerator communica on [34].

3.1.1. Integra ng the ONIC driver on QDMA

On the host side, we have taken advantage of Xilinx publishing the Open NIC driver, to use it as

the basic structure to incorporate it on the QDMA driver. The new QDMA driver infrastructure

developed in the MEEP project includes the support for Ethernet over PCIe.

In order to implement this new feature inside the QDMA driver, we have incorporated parts of

the Open NIC driver, specifically:

D5.3 v1.0 12 / 91

https://github.com/Xilinx/dma_ip_drivers
https://github.com/Xilinx/open-nic-driver
https://github.com/Xilinx/open-nic-driver
https://github.com/Xilinx/linux-xlnx

• The crea on of the Ethernet device.

• Enabling the DMA transfers of data from/to the kernel-mapped memory.

• The implementa on of the Tun-on-mmap protocol from inside the kernel.

This code is available in the MEEP QDMA driver in this repository: MEEP QDMA+ONIC driver.

3.1.2. Developing the RISC-V driver counterpart

The RISC-V driver counterpart has been implemented based on the Xilinx Open NIC source code,

by replacing the access to the DMA system to the use of the shared memory area in I/O space.

Being fully in the I/O space we ensure that the memory accesses from the host side through

the QDMA+ONIC driver and the RISC-V accesses through the in-kernel /dev/mem device are

coherent, and there are no cache-related issues.

This code has been incorporated in the Xilinx Linux version on the MEEP Lagarto Openpiton SDK

repository.

3.2. Driver for 10Gbit Ethernet over QSFP

Providing Ethernet on the QSFP connec on involves the RISC-V system running on the FPGA,

that will be connected to another FPGA board in a point-to-point connec on, or to a local switch.

The driver running on Linux on the RISC-V side has been implemented based on the driver

developed in the EPI project, with a DMA-based solu on and ability for sca er-gather. The driver

accesses 2 types of data. On the one side, it uses DMA descriptors mapped onto non-cachable

memory, ensuring that the DMA engine works properly.

On the other side, the driver receives and interacts with data buffers from the Linux kernel, on

regular cacheble memory. As the Openpiton infrastructure is not providing cache flushing for

coherency with memory accesses coming from the DMA engine, we have implemented a simple

memory filling rou ne to try to flush the cache of previously accessed data. This solu on is used

right before se ng the DMA up for transfering a packet, and it provides a temporary solu on

while we find another op on to use.

This code is available in the MEEP Lagarto Openpiton SDK repository.

The Ethernet IP for the QSFP connec on is described in Sec on 4.2 of theMEEPDeliverable D6.3:

Emulated accelerator second release with full capacity of inter-accelerator communica on [34].

3.3. Driver for 100Gbit Ethernet over QSFP

We have recently verified that the same driver that we use for 10Gbit Ethernet will support

100Gbit Ethernet communica ons. The only difference is that the 100Gbit IP hardware requires

D5.3 v1.0 13 / 91

https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/xilinx_pcie_drivers
https://gitlab.bsc.es/meep/meep-os/lagarto-openpiton-sdk
https://gitlab.bsc.es/meep/meep-os/lagarto-openpiton-sdk

an addi onal ini aliza on that will be implemented in the 10Gbit Ethernet driver, allowing

100Gbit transfers.

D5.3 v1.0 14 / 91

4. Compiler support

This sec on describes all the development carried out during the MEEP project aimed at support-

ing the MEEP architecture. This work includes contribu ons for the RISC-VVector Extension,

which targets the VPU accelerator component of MEEP, and the Systolic Array extensions. This

work is mainly based on the LLVM infrastructure.

4.1. Infrastructure

The LLVM Project is a collec on of modular and reusable compiler and toolchain technologies

under open source permissive licences. The most commonly known components of LLVM are

the Core libraries (commonly known as LLVM) and the Clang C/C++ front end.

LLVM is based around the idea of a common intermediate representa on called LLVM IR. This

representa on is powerful enough to cover a larger number of analyses and transforma ons that

can be reused among different architectures. As a prac cal compiler, though, LLVM includes

other representa ons that are used in specific parts of the compila on process. Clang has its own

AST (Abstract Syntax Tree), the Codegen library of LLVM Core uses a low level representa on

called Machine IR, and the MC library of LLVM Core uses an even lower-level representa on for

encoding (assembly) and decoding (disassembly) instruc ons.

The work done on MEEP is built on top of the compiler developed in EPI SGA-1 which was

extended in that project to support the RISC-VVector Extension version 0.7.1 as implemented

by the microarchitecture of the Vector Processor.

4.2. RISC-VVector Extension op misa ons

This sec on describes contribu ons that were done in the MEEP project with the goal to improve

the code genera on and the applicability of the RISC-VVector Extension.

4.2.1. Prefetching

The RISC-VVector Extension has been designed so it can adapt many implementa on scenarios.

This led to a design that is vector-length agnos c: the ISA does not prescribe a specific size for

the vector registers. At the same me it provides enough func onality so it is possible to use the

same sequence of vector instruc ons in implementa ons with different physical vector length.

An outcome of the work developed in the EPI project was a loop vectorisa on strategy that

is fully vector length agnos c. The compiler emits a vectorised loop that requests the CPU to

process, using vector instruc ons, as many elements as the remaining itera ons. This is called

the applica on vector length. The CPU returns the available vector length it can honour based on

the specific vector register size of the implementa on.

The RISC-VVector Extension defines what values the vector length returns but the code emi ed

D5.3 v1.0 15 / 91

Applica on Cycles NP Cycles P ∆Cycles (%) #Insns NP #Insn. P ∆#Insns (%) R Miss NP R Miss P Delta R Miss (%)

Blackscholes 35709 35077 -1.77% 71109 72237 1.59% 251 243 -3.19%

Somier 49101 48920 -0.37% 73472 73536 0.09% 373 301 -19.30%

SpMV 4727 5359 13.37% 3516 3672 4.44% 172 183 6.40%

Matmul 3115 3364 7.99% 905 1040 14.92% 96 106 10.42%

Table 1: Results without prefetch (NP) and compiler introduced prefetch (P).

by the compiler is fully agnos c. So a plausible scenario for an architecture that extends the

RISC-VVector Extension is to further this idea and let the CPU choose the vector length it deems

ideal for a given itera on. As a way to communicate to the CPU what memory is going to be used

by a loop, we looked at prefetch instruc ons, which in addi on to do prefetch by themselves (of

a future memory access). Not that the instruc ons are used in this context as hints to the CPU

and not necessarily as a mechanism to enforce the memory prefetch.

The RISC-V community proposed a new set of instruc on extensions called the RISC-V Base

Cache Management Opera ons ISA Extensions (Zcmo). For the purpose of this explora on we

only implemented support for the prefetch.r instruc on in the compiler. We then modified

LLVM so the IR intrinsic llvm.prefetch could emit this instruc on. For the purpose of evalua on

we modified the Coyote emulator so it could recognize the instruc on and emulate a prefetch

from the cache.

Then we implemented a simplified version of the approach described in [13] so the compiler

inserted llvm.prefetch in loops containing set vector length instruc ons andmemory references.

This was evaluated against a small set of benchmarks to assess the feasibility of the technique.

The results are summarised in Table 1 and they yield mixed, inconclusive, results. All of them

expose, expectedly, extra instruc ons executed, even if moderately like in the case of the Somier

applica on. Some applica ons show a small improvement in number of cycles, which suggests

their performance improves while others show a medium increase in cycles. The varia ons of

the cycles correlates with the change of read misses (“R Miss” column) although this correla on

is not totally clear. For instance, Somier reports a rela vely large reduc on of read misses but

those do not translate into a much more improved performance, specially given that the number

of extra instruc ons in the prefetch version is small.

It seems reasonable to conclude that the so ware prefetching mechanism based on the evaluated

so ware prefetching algorithms, might not be the most suitable way to convey memory access

informa on from so ware to the hardware.

4.2.2. Loop transforma ons for temporal locality

MEEP architecture features a vector ISA that provides a large (32) number of registers. Tradi-

onally, to keep the func onal units busy, applica ons need to make sure the register pressure

is high while reducing the memory accesses. Minimising the number of memory accesses and

trying to maximise the register u lisa on is a similar problem to exploit temporal locality as much

as possible.

Loop transforma ons are known to be able to drama cally impact the locality characteris cs of

computa onal kernels. We want to see if the applica on of these techniques is also useful to

minimise memory accesses.

D5.3 v1.0 16 / 91

We used the Somier applica on as a case study. It simulates a 3D grid of of springs (like a three

dimensional box spring). For each me step, using the posi on of the nodes, elas c forces are

computed, then accelera ons, veloci es and then the new posi ons. The three magnitudes,

posi on, forces, accelera on and veloci es, are stored independently, and computed, for each

node, one a er the other. Lis ng 1 is a high level descrip on of the simula on run by Somier.

foreach (t : timestamp) {
foreach (p : nodes) {

forces[p] <- compute_forces(position[p])
}
foreach (p: nodes) {

accels[p] <- compute_accelerations(forces[p])
}
foreach (p: nodes) {

velocs[p] <- compute_velocities(accels[p], t)
}
foreach (p: nodes) {

positions[p] <- compute_positions(velocs[p], t)
}

}

Lis ng 1: High-level scheme of the simula on implemented in Somier

Before implemen ng them in the compiler, we wanted to determine if the loop transforma ons

would be favourable. Because the nodes are laid out in a 3D grid, each loop for nodes in Lis ng 1

is actually a 3-nested loop. The first thing we did was to linearise the three loops, called loop

fla ening, into a single loop that traverses all the nodes. Then we applied loop fusion. So we

ended with a scheme like in Lis ng 2.

foreach (t : timestamp) {
foreach (p : nodes) {

forces[p] <- compute_forces(position[p])
accels[p] <- compute_accelerations(forces[p])
velocs[p] <- compute_velocities(accels[p], t)
positions[p] <- compute_positions(velocs[p], t)

}
}

Lis ng 2: Somier high level scheme, a er loop fusion

A er this change, though, the code is s ll using memory accesses to store and then load later.

This exposes temporal locality so the cache can resolve these accesses. But we would like to

avoid involving the memory system here. So we implemented a pass in the compiler that can

remove those clearly redundant memory accesses.

Lis ng 3 shows the final loop. Figure 2 shows the reduc on of loads in each itera on visible in a

trace generated by vehave, a trap-based emulator developed in the EPI-SGA1 project. The trace

shoes we are able to remove 6 of the vector loads (vle64) in every itera on.

foreach (t : timestamp) {
foreach (p : nodes) {

reg_forces := compute_forces(position[p])
forces[p] <- reg_forces
reg_accels := compute_accelerations(reg_forces)
accels[p] <- reg_accels
reg_velocs := compute_velocities(reg_accels , t)
velocs[p] <- reg_velocs
positions[p] <- compute_positions(reg_velocs , t)

D5.3 v1.0 17 / 91

}
}

Lis ng 3: Somier high level scheme, with reduced load accesses

Figure 2: At the le , the original loop in Lis ng 2. At the right the loop in Lis ng 3.

4.3. Systolic Array

TheMEEP architecture includes in its design two systolic arrays that act as accelerators. However,

rather than presen ng the accelerators like compute engines that must be accessed via I/O,

MEEP chooses the path of integra ng them in the ISA.

For this purpose we had to extend the RISC-V ISA with custom instruc ons that would allow

opera ng the systolic array. This extension has been designed with some degree of flexibility in

mind and it is inspired in some way by the RISC-VVector Extension

• The ISA provides a set of 32 systolic array registers per systolic array.

• Opera ons use the systolic array register as explicit operands of the systolic array instruc-

ons.

• The ISA defines two opera onal lengths.

• Systolic array opera ons, including memory accesses, receive the opera onal lengths as

implicit operands.

• The ISA defines a generic opera on that each Systolic Array maps to the implemented

func on.

We implemented this extension in the LLVM compiler as assembly and disassembly support for

the new instruc ons and systolic registers introduced. This required extending the MC layer of

LLVM, whose task is to assemble (encode) and disassemble (decode instruc ons). Given the low

level nature of the work carried out by the systolic arrays, there is no plan to implement a C/C++

intrinsic interface for this extension.

Refer to the Appendix A for a descrip on of the current specifica on of this extension as imple-

mented by the compiler

D5.3 v1.0 18 / 91

4.4. Mul -devices support

The mul -devices proposal, described in more detail in Sec on 9.2.1, was implemented in the

clang C/C++ front-end of LLVM. Someminimal changeswere also needed in the OpenMP run me

of OpenMP. The implementa on is available at MEEP Compilers repository.

D5.3 v1.0 19 / 91

https://gitlab.bsc.es/meep/meep-compilers/llvm-mono/-/tree/meep-target-spread

5. Run mes and Libraries

In this sec on we present the addi onal packages, included in the Linux distribu on, to com-

plete the HPC-AI ecosystem: the MPICH MPI library, the COMPSs/PyCOMPSs workflows, the

TensorFlow Lite and Apache Spark frameworks, and the BLIS and NumPy libraries. All of them

available as Fedora installable packages.

5.1. Message Passing Interface

The Fedora 33 distribu on comes with the MPICH MPI library as an installable package. MPICH

is version 3.3.2. We install the package by default when genera ng the Fedora filesystem image.

We tested the MPI implementa on with the HPCC - HPC Challenge benchmark, version 1.5.0.

The benchmark has been run with 1, 2 and 4 cores on a single Ariane-based node and we found

no issues while running this MPI applica on.

Running MPI is achieved with the command: mpirun -iface lo -np 2 <applica on-binary> <appli-

ca on arguments>

The MPI run me is available at MEEP Run mes webpage

5.2. OpenMP run me

The OpenMP support was added through LLVM. The LLVM compiler and OpenMP support library

(libomp.so) were imported from the EPI project.

The LLVM compiler allows to run OpenMP applica ons in the host server (Intel-based), and the

RISC-V on the FPGA. On the RISC-V, we have run the STREAM benchmark to test the OpenMP

support.

Addi onally, we have implemented a prototype version of the OpenMP offload to allow the Intel

host to spawn parallelism onto the RISC-V cores. This implementa on is presented in sec on 9.

5.3. COMPSs run me

In this sec on, we present how the COMPSs run me has been ported to support ACME EA

pla orms. COMPSs is a task-based programming model and run me system to implement

parallel distributed workflows. Despite the core of the COMPSs run me is wri en in Java it

also offers bindings for C++ and Python (PyCOMPSs). These bindings interact with the run me

using Java Na ve Interface. COMPs/PyCOMPSs workflows are executed in a master-worker

mode, where the workflow is executed in a master process and the tasks are executed in the

worker processes which can be spawned in the same or different compu ng nodes. The spawn

of the processes is performed by Secure Shell and the communica on between master and

worker nodes are performed by TCP/IP. The COMPSs run me is integrated with Extrae in order

D5.3 v1.0 20 / 91

https://release.meep-project.eu/toolchain.html#hpc-runtimes

to generate execu on traces for performance analysis.

To enable the execu on of COMPSs/PyCOMPSs applica on in the ACME EA prototype, the

following main dependencies must be supported in the RISC-V 64 bits architecture and the ACME

EA has to support profiling with Extrae and networking through TCP/IP protocol. The details

about how the networking has been provided in the ACME EA prototype is explained in Sec on 3,

and the profiling support in ACME EA is explained in Sec on 7.1 Regarding the first topic, the

Python interpreter and the Secure Shell client and servers are available in the base Fedora 33

distribu on, but the problema c dependency in this case was the Java support.

At the beginning of the Project COMPSs was requiring Java 8, however there is not a Java Virtual

Machine (JVM) version 8 working for a RISC-V 64 bit architecture. In the Fedora distribu on, we

found a limited JVM for version 11. It is a ZeroVM implementa on which does not include all the

features and with limited performance because it do not include the Just-In-Time compiler. In

the OpenJDk community there is a project for por ng the full OpenJDK JVM for RISC-V 64 bits

architecture which was star ng in Java version 14. So, the main effort to port COMPSs to the

ACME EA pla orm and other RISC-V architectures was devoted to support newer Java versions.

It was a tedious task because there was a major change in the Java releases since version 9.

Java EE and some other features included in the Java distribu on where removed and ported

to external projects, and the organiza on of the JVM libraries has also changed affec ng the C

and Python bindings. All these changes where ini ally ported to COMPSs version 2.10.1 and

consolidated in version 3.0 and 3.1.

Source code of the COMPSs run me including RISC-V 64 bits support can be found in COMPSs

github repository and the RPM packages can be found in the MEEP RPM repository.

5.4. TensorFlow Lite framework

In this sec on we present howwe ported the TensorFlow Lite run me to make it work on Sifive

HiFive Unmatched board and ACME-EA pla orms successfully. TensorFlow Lite can be build

either with bazel - which currently does not have support for RISC-V - or with CMake. Bazel was

preferred as it is the main build system for the TensorFlow community. However it did not have

support for RISC-V. Support was planned and some proposals to enable it were publicly made.

We spend some effort on a emp ng to enable support following the suggested guidelines but

eventually we found it was taking too long and switched to CMake.

To port TensorFlow lite we have first modified the basic build scripts to ac vate the following

flags on GCC compiler: ARMCC_FLAGS = " − funsafe −math − optimizations" and add
the following op ons to the cmake command line: -DCMAKE_SYSTEM_NAME=Linux -DCMAKE_-

SYSTEM_PROCESSOR=riscv64 -DTFLITE_ENABLE_XNNPACK=ON.

The default CMake target builds a C library, so it was only possible to run benchmarks based

on C. But our benchmarks were wri en in python. So we had to also compile and install a

pip package for python. To build tensorflow lite as a pip package we have added the riscv64

op on on the script tensorflow/tensorflow/lite/tools/pip_package/build_pip_package_with_cmake.sh.

The modifica on consists on adding a switch case for riscv64 and correctly se ng the variable

WHEEL_PLATFORM_NAME to riscv64.

Most of the effort was devoted to finding the combina on of flags that worked adequately. As

D5.3 v1.0 21 / 91

https://github.com/bsc-wdc/compss
https://github.com/bsc-wdc/compss
https://release.meep-project.eu/nexus/#browse/search/yum=attributes.yum.name%3Dpycompss

it happened enabling some flags avoided some compila on errors however induced errors in

other pieces of the so ware stack. A er inves ga ons we found out the combina on of flags

and opera ng system packages that needed to be installed so the run me compiled successfully.

Thus, addi onally we need to install the following packages on the opera ng system:

• py nd11. It is needed to set appropriately the INCLUDE_PATH environment variable.

• python3-dev

• libboost-all-dev

• glibc2.33

TensorFlow Lite is offered as a RPM package containing the run me with the modifica ons made

on MEEP context. It can be found at: MEEP Toolchain webpage

5.5. Spark framework

Spark heavily relies on JVM for its core and encountered the same problems regarding the

Java requirements in COMPSs. Once that was solved and java run me was enabled no more

modifica ons were needed to make Spark run me work on MEEP systems. Spark is released as a

RPM package containing the run me and can be found at MEEP Toolchain webpage.

5.6. BLIS library

BLIS stands for BLAS-like Library Instan a on So ware [38] and is the library employed to

give applica ons the linear algebra func onali es that they required. In the context of the

MEEP project, we explored BLIS in two different versions: Self-hosted and Offload (for more

informa on on MEEP execu on modes, we refer the reader to deliverable D5.2, MEEP execu on

modes sec on). Moreover, we provide the BLIS Self-hosted version to users, however the BLIS

offload version was targeted only as an explora on task, hence, there is no BLIS offload release.

The descrip on/results of this explora on can be found at Sec on The MEEP offload-mode,

sub-sec ons BLIS single-device approach and BLIS mul -device approach.

Descrip on

The BLIS self-hosted version provides and explores the capabili es of execu ng this library

na vely in the accelerator. Here, we focus on two major features: 1) parallelism offered by

the OpenMP programming model and also 2) the capabili es of the compiler to issue vector

instruc ons when encountering SIMD direc ves.

Regarding the first feature, we are relying in the infrastructure already present and that applies the

OpenMP programming model for exploring the parallelism capabili es of the pla orm. Some of

the BLAS levels offered by BLIS do not leverage the mul -thread capabili es present in the library.

For instance, level 1 BLAS rou nes (vector addi on, axpy among others) lack this capability. On

the other hand, level 3 BLAS rou nes, such as matrix mul plica on, take advantage of this feature

and performance improvements can be seen.

D5.3 v1.0 22 / 91

https://release.meep-project.eu/toolchain.html#da-runtimes-tflite
https://release.meep-project.eu/toolchain.html#da-runtimes-spark

For OpenMP SIMD direc ves, BLIS also renders this capability, provided that, during the configu-

ra on phase, BLIS is able to detect that the compiler supports this direc ve. Unfortunately, BLIS

is not always able to detect this feature, and for this reason we are modifying the implementa on

and explicitly add simd direc ves.

Modifica ons

As previously men oned, instead of relying on this BLIS verifica on mechanism, we modified the

source code to explicitly try to vectorize certain parts of the code if the compiler is able to. To

highlight the nature of these modifica ons, check the next example.

Original source code:

// ...
PRAGMA_SIMD \
for (dim_t i = 0; i < n; ++i) \
{ \

PASTEMAC(ch,addjs)(chi1[i], psi1[i]); \
} \
// ...

Modified source code:

// ...
_Pragma("omp␣simd") \
for (dim_t i = 0; i < n; ++i) \
{ \

PASTEMAC(ch,addjs)(chi1[i], psi1[i]); \
} \
// ...

Library version and configura ons

The version of this library used in MEEP is based on BLIS version 0.9.0, commit 4603324e [21].

Interes ngly, the BLIS library provides a set of configura ons that implement op miza ons for a

specific set of pla orms. However, we cannot take advantage of these op miza ons because

there is no configura on for RISC-V pla orms. For this reason, we have to rely on the generic

configura on that uses the set of generic kernels and do not have op miza ons in place that we

can take advantage of.

In MEEP we explore and test this library in a large set of compu ng pla orms with different

features and behaviours. For this reason, we provide and maintain a BLIS version per pla orm

because each onemight need a different type of configura on. To this end, in theMEEP repository

for BLIS, we have a branch for each of the necessary configura ons and pla orms. This allows

to rapidly modify, adapt and deploy a par cular version if we find a problem or improvement.

On the down side, we pay the price of having a large set of versions (branches) that need to be

maintained.

Last but not least, BLIS is available to users in two different flavours:

• BLIS source code per pla orm;

• BLIS RPM package: RPM packages for ACME-EA releases.

All of these releases are available at MEEP Toolchain webpage.

D5.3 v1.0 23 / 91

https://release.meep-project.eu/toolchain.html#hpc-libraries-blis

5.7. Numpy

Numpy is a Python package that has support for scien fic compu ng. It provides efficient

support for different mul dimensional arrays, and mathema cal func ons. In order to get benefit

of Numpy in the MEEP prototype we have to enable this python package to work with the

custom BLIS library. Numpy uses the BLAS and LAPACK interfaces to access to the efficient

implementa on of mul dimensional array sand linear algebra func ons. To enable Numpy to run

with the MEEP BLIS library, it has been installed from sources which can be found in the Numpy

Github repository.

Before compiling Numpy, we have to enable LAPACK to use the MEEP BLIS library. We can

compile one of the LAPACK implementa ons from source code linking it with the MEEP BLIS

library. In our case, we have used the LAPACK reference implementa on which can be found

in the LAPACK github repository. To indicate the loca on of the BLAS library used in LAPACK

you have to modify the make.inc se ng the MEEP BLIS library path in the variable BLASLIB (eg.

BLASLIB = /apps/riscv/ubuntu/blis/lib/libblis.so). Then you just need to follow the normal cmake

installa on.

Once we have LAPACK compiled with BLIS, we need to indicate the loca on of the LAPACK

libraries and the BLIS library to the Numpy installa on configura on. First, we had to edit the

cite.cfg and set the BLIS library path at the [blis] tag. Once the path has been set, we have to

compile Numpy specifying the loca on of the LAPACK in the LAPACK variable before execu ng

the installa on command. An installa on command example can be found below.

LAPACK=/home/user/.local/lapack/liblapack.so ATLAS=None CFLAGS='-O3'\
python3 setup.py install --user.

D5.3 v1.0 24 / 91

https://github.com/numpy/numpy
https://github.com/numpy/numpy
https://github.com/Reference-LAPACK/lapack/

6. Container support

In this sec on, we present the work performed to allow the execu on of containers in the ACME-

EA pla orms. We have selected three container engines to validate our work: Moby, Podman

and Singularity. Moby is the open source version of the Docker stack which is the most popular

container engine. Podman is also a very popular engine because has a compa ble interface with

Docker but with a simplified execu on in rootless mode. Finally, Singularity is the most popular

container engine in the HPC world because it easily works with tradi onal resource managers

and devices

6.1. Enabling container support on ACME-EA

The work for enabling the container support for the ACME-EA pla orm is organized in two main

tasks: one for tes ng and enabling the container engine so ware; and another to test and enable

the required kernel modules are available in the system and properly configured.

Regarding the first task, we have check if the container engines or required dependencies were

available in the Linux reference distribu on for the project (Fedora-33) for the RISC-V 64-bits

architecture. All three engines are implemented with Go, so it is required in the three cases. We

did not find a working version of the container packages in the distribu on and the version of

the Go packages provided was not fulfilling the engines requirements. To fix it, we generate new

RPM packages for the dependencies Go and runc as well as for Moby, Podman and Singularity

which can be found in the MEEP RPM repository. The modified specs for genera ng this RPMS

can be found in the MEEP OS RPM specs gitlab repository.

For enabling the execu on of containers, the kernel must contain certain modules and the system

must be configured in proper way to allow container engines to successfully create and run

containers. To facilitate this task to system administrator, we have implemented an script which

checks if the system is configured in a proper way (available at this repository). It is tes ng if

mandatory and recommended modules such as cgroups, user namespaces, selinux, apparmor

are available and properly configured, or some virtual networking capabili es are available or if

resources limits are properly set. A part from that, it also test if one of the container engine is

available and running, and finally it tries to run a ”hello world” tes ng container.

6.2. Working with distributed applica ons

The main difference between container engines is the networking management and it could

affect the execu on of distributed compu ng frameworks like MPI, COMPSs or Spark mul -node

applica ons. In the case ofMoby (Docker),it creates a virtual IP networks per host were containers

are deployed. If you want to communicate to containers in different host, you have to create an

overlay network to bridge the networks between nodes and deploy the containers in this nodes.

It introduces an overhead for the overlay management and it is very difficult to use the MPI

network fabrics (infiniband,...). In contrast, it facilitates the configura on of the framework, for

instance you just need to set theMPI hosfilewith the IPs of the containers. Another op on for this

container engine is to expose the ports used by the remote process managers and communica on

D5.3 v1.0 25 / 91

https://release.meep-project.eu/nexus/#browse/browse:rpmacme
https://gitlab.bsc.es/meep/meep-os/rpm-specs-riscv/
https://gitlab.bsc.es/meep/meep-os/docker-check

services (e.g 22/ssh, 443/h ps,...) to some port in the host and use the host IPs. This will reduce

the overlay management overhead, but it will require a more complex framework configura on

and the access to specific network fabric is not possible because the container is s ll using a

virtual network.

In the case of Singularity, they use the host networking services by default. It has the disadvantage

that the user has to be aware of the ports used by the hosts or other containers running in the

same host. It does not allow two containers to be deployed using the same port. In contrast, it

allows the usage of specialized networking fabrics as in the case of MPI applica ons. Network

devices, drivers and libraries of the host can be bound and used from the container. More details

about how to use MPI with Singularity containers can be found in this link.

6.3. Container releases

A part form enabling the use of containers, we have created several containers images compa ble

with the RISC-V 64bits architecture including some of the so ware stack elements. You can

find them in the MEEP Container Image repository. In this repository we can find the following

images:

• riscv64/fedora: A container image for RISC-V 64bit architecture with the a basic Fedora

installa on. It is used as the base image for the rest of images.

• riscv64/compss: Inherited from riscv64/fedora, it contains the COMPSs and PyCOMPSs

programming model and run me. It can be used to run the different COMPSs workflows

described in Sec on 8.4.

• riscv64/ lite: Inherited from riscv64/fedora, it contains the TensorFlow Lite framework. It

can be used to run the TensorFlow models described in Sec on 8.3.1.

• riscv64/spark: Inherited from riscv64/fedora, it contains the Spark framework. It can be

used to run the Epistasis use case described in Sec on 8.3.2.

D5.3 v1.0 26 / 91

https://docs.sylabs.io/guides/3.9/user-guide/mpi.html
https://release.meep-project.eu/nexus/#browse/browse:acme:v2%2Friscv64

7. Performance Analysis Methodology

In this sec on we will describe the profiling support required to be installed in the MEEP so ware

stack; as well as the POP [5] methodology, used as a driving model to carry on our performance

analysis. POP methodology provides a quan ta ve way of measuring rela ve impact in perfor-

mance of the different factors inherent in parallelisa on. The sec on is completed by extending

the POP methodology with vector analysis.

7.1. Profiling support

The following sec ons will describe the so ware components we have included in the so ware

stack in order to acquire basic informa on about the execu on of benchmarks. Extrae [15]

will allow to generate Paraver [4] traces (events spread among melines) that can be analyzed

post-mortem.

PAPI [37] and Libunwind [3] enables the access to hardware counters and the execu on callstack

respec vely. Such informa on will be requested by Extrae and injected in the Paraver trace in

order to complete the view.

7.1.1. Extrae

Extrae [15] is the package devoted to generate Paraver [4] trace-files for a post-mortem analysis.

Extrae is a tool that uses different interposi on mechanisms on inject probes into the target

applica on so as to gather informa on regarding the applica on performance.

In order to facilitate the configura on, Extrae can be configured through an XML file. The

distributed package contains several examples.

1. Interposi on mechanisms

Extrae takes advantage of mul ple interposi on mechanisms to add monitors into the

applica on. No ma er which mechanism is being used, the target is the same, to collect

performancemetrics at known applica ons points to finally provide the performance analyst

a correla on between performance and the applica on execu on. Extrae currently uses

the following interposi on mechanisms:

(a) Linker preload (LD_PRELOAD)

Most of the current opera ng systems allow injec ng a shared library into an applica-

on before the applica on gets actually loaded. If the library that is being preloaded

provides the same symbols as those contained in shared libraries of the applica on,

such symbols can be wrapped in order to inject code in these calls. In Linux sys-

tems this technique is commonly known by using the LD_PRELOAD environment

variable. Extrae contains subs tu on symbols for many parallel run mes, as OpenMP

(either Intel, GNU or IBM run mes), pthread, CUDA accelerate applica ons, and MPI

applica ons.

D5.3 v1.0 27 / 91

This interposi on mechanism has been the one most widely used in the context of

MEEP throughout all the performance analysis that will be reported in D5.4.

(b) DynInst

Dyninst is an instrumenta on library that allows modifying the applica on by injec ng

code at specific code loca ons. Although it originally allowed modifying the appli-

ca on code when the applica on was run, now it supports rewri ng the binary of

the applica on so the code injec on is required only once. Extrae uses Dyninst to

instrument different parallel programming run mes as OpenMP (either for Intel, GNU

or IBM run mes), CUDA accelerated applica ons, and MPI applica ons. Dyninst also

offers Extrae the possibility to easily instrument user func ons by simply lis ng them

in a file.

In the context of MEEP, we do not use this mechanism so the distributed Extrae in

the MEEP So ware Stack comes without DynInst support.

(c) Addi onal instrumenta on mechanisms

Extrae also takes the advantage of some parallel programming run mes that have

their own instrumenta on (or profile) mechanisms available for performance tools.

These include the widely-known Message Passing Interface (MPI) which provides

the Profile-MPI (PMPI) layer. There are some compilers that allow instrumen ng

applica on rou nes by using special compila on flags during compila on and link

phases.

(d) Extrae API

Finally, Extrae gives the user the possibility to manually instrument the applica on

and emit its own events it the previous mechanisms do not fulfill the user’s needs. The

Extrae API is detailed in the Extrae user-guide documenta on that accompanies the

package.

2. Sampling mechanisms

Extrae does not only offer the possibility to manually instrument the applica on code, but

also offers to use sampling mechanisms to gather performance data. While adding monitors

into specific loca on of the applica on produces insight which can be easily correlated

with source code, the resolu on of such data is directly related with the applica on control

flow. Adding sampling capabili es into Extrae allows providing performance informa on of

regions of code which has not been instrumented.

Currently, Extrae sports two different sampling mechanisms. The first mechanism is the

old-known signal mers, which fires the sampling handler at a specific me interval. The

second sampling mechanism uses the processor performance counters to fire the sampling

handler at a specified interval of events interval. While the first mechanism can provide

totally uncorrelated samples with the applica on code, the second mechanism, using the

appropriate performance counters, can provide insight of the applica on but s ll presen ng

some correla on with the applica on code/performance.

The monitors added by Extrae gather different types of informa on. Depending on the

D5.3 v1.0 28 / 91

monitor placement, each monitor can be taught to gather specific informa on. The most

common informa on gathered is:

(a) Timestamp

When analyzing the behavior of an applica on, it is important to have a fine-grained

mestamping mechanism (up to nanoseconds). Extrae provides a set of clock func ons

that are specifically implemented for different target machines in order to provide the

most accurate possible ming. On systems that have daemons that inhibit the usage

of these mers or that do not have a specific mer implementa on, Extrae s ll uses

advanced POSIX clocks to provide nanosecond resolu on mestamps with low cost.

In the context of MEEP project we have used this last op on by enabling it at the

configure command of the building/installa on Extrae process (--enable-posix
-clock).

(b) Performance and other counter metrics

Extrae uses the PAPI and the PMAPI interfaces to collect informa on regarding the

microprocessor performance. With the advent of the components in the PAPI so ware,

Extrae is not only able to collect informa on regarding the microprocessor, but also

allows studying mul ple components of the system (disk, network, opera ng system,

among others) and also extend the study over the microprocessor (power consump on

and thermal informa on). Extrae mainly collects these counter metrics at the parallel

programming calls and at samples. It also allows capturing such informa on at the

entry and exit points of the instrumented user rou nes.

(c) Reference to the source code

Analyzing the performance of an applica on requires rela ng the code that is responsi-

ble for such performance. This way the analyst can locate the performance bo lenecks

and suggest improvements on the applica on code. Extrae provides informa on re-

garding the source code that was being executed (in terms of name of func on, file

name and line number) at specific loca on points like programming model API calls or

sampling points.

7.1.2. libunwind

The primary goal of this library is to define a portable and efficient C programming interface

(API) to determine the call-chain of a program [3]. The API addi onally provides the means to

manipulate the preserved (callee-saved) state of each call-frame and to resume execu on at any

point in the call-chain (non-local goto). The API supports both local (same-process) and remote

(across-process) opera on. As such, the API is useful in a number of applica ons. Some examples

include:

• excep on handling

The libunwind API makes it trivial to implement the stack-manipula on aspects of excep on

handling.

D5.3 v1.0 29 / 91

Figure 3: So ware layers needed to access HW counters.

• debuggers

The libunwind API makes it trivial for debuggers to generate the call-chain (backtrace) of

the threads in a running program.

• introspec on

It is o en useful for a running thread to determine its call-chain. For example, this is

useful to display error messages (to show how the error came about) and for performance

monitoring/analysis.

• efficient setjmp()

With libunwind, it is possible to implement an extremely efficient version of setjmp().

Effec vely, the only context that needs to be saved consists of the stack-pointer(s).

In the context of MEEP, we use Extrae (Sec on 7.1.1) to do the tracing and profiling and Extrae

relies on libunwind for its sampling feature (needed by the proposedVectorAnalysis Methodology).

So we provide libunwind in the MEEP So ware Stack through an RPM package.

7.1.3. Enabling hardware counters

Extrae (Sec on 7.1.1) leverages PAPI to read HW performance counters. Unfortunately, PAPI

does not currently provide support for RISC-V architectures. This is mainly because PAPI relies,

in turn, on lower so ware layers that lack (or have very preliminary RISC-V support) as are the

red boxes depicted in Figure 3.

D5.3 v1.0 30 / 91

The op on taken to overcome this limita on in the MEEP project was to use a PAPI-like interface

that provides to Extrae the minimal API/func onality that it needs while reading the HW counters

by accessing directly the RISC-V CSR event registers, thus avoiding the use of libpfm.

To make Extrae work with this PAPI-like interface, the following op ons were needed at the

configure command of the building process: --enable-riscv64 --with-papi=<path-papi-
li
ke> --with-papi-headers=<path-regular-papi>/include.

One last thing needed to read HW counters with this mechanism was to modify the OpenSBI

to set the permissions to allow this access at startup. This is normally done on-the-fly through

the perf kernel interface but, as we we are shortcu ng its use, we need to hardcode the needed

allowing permissions. Lis ng 4 shows the implemented modifica ons at lines 5 and 18-19.

1 /* Disable user mode usage of all perf */
2 /*counters except default ones (CY, TM, IR) */
3 if (misa_extension('S') && sbi_hart_priv_version(scratch) \
4 >= SBI_HART_PRIV_VER_1_10)
5 csr_write(CSR_SCOUNTEREN , 7); -->csr_write(CSR_SCOUNTEREN , -1);
6

7 /**
8 * OpenSBI doesn't use any PMU counters in M-mode.
9 * Supervisor mode usage for all counters are enabled by default
10 * But counters will not run until mcountinhibit is set.
11 */
12 if (sbi_hart_priv_version(scratch) >= SBI_HART_PRIV_VER_1_10)
13 csr_write(CSR_MCOUNTEREN , -1);
14

15 /* All programmable counters will start running */
16 /*at runtime after S-mode request */
17 if (sbi_hart_priv_version(scratch) >= SBI_HART_PRIV_VER_1_11)
18 csr_write(CSR_MCOUNTINHIBIT , 0xFFFFFFF8);\
19 -->csr_write(CSR_MCOUNTINHIBIT , 0x00000000);

Lis ng 4: OpenSBI modifica ons in mstatus_init func on (in lib/sbi/sbi_hart.c).

It is worth men on that this version of OpenSBI together with the PAPI-like interface are both

included in the MEEP So ware Stack.

7.2. POPMethodology

A emp ng to op mise performance of a parallel code can be a daun ng task, and o en it is

difficult to know where to start. For example, we might ask if the way computa onal work

is divided is a problem? Or perhaps the chosen communica on scheme is inefficient? Or

does something else impact performance? To help address this issue, POP ([5]) has defined a

methodology for analysis of parallel codes to provide a quan ta ve way of measuring rela ve

impact of the different factors inherent in parallelisa on. This subsec on introduces these metrics,

explains their meaning, and provides insight into the thinking behind them.

A feature of the methodology is that it uses a hierarchy of metrics (Figure 4), each metric reflec ng

a common cause of inefficiency in parallel programs. These metrics then allow comparison of

parallel performance (e.g. over a range of thread/process counts, across different machines,

or at different stages of op misa on and tuning) to iden fy which characteris cs of the code

D5.3 v1.0 31 / 91

Figure 4: POP metrics.

contribute to inefficiency.

The first step for calcula ng these metrics is to use a suitable tool (e.g. Extrae ([15])) to generate

trace data whilst the code is executed. The traces contain informa on about the state of the

code at a par cular me (e.g. it is in a communica on rou ne or doing useful computa on) and

also contains values from processor hardware counters (e.g. number of instruc ons executed,

number of cycles).

The metrics are then calculated as efficiencies between 0 and 1, with higher numbers being

be er. In general, we regard efficiencies above 0.8 as acceptable, whereas lower values indicate

performance issues that need to be explored in detail. The ul mate goal then for the POP

methodology is rec fying these underlying issues.

The approach outlined here is applicable to various parallelism paradigms, however for simplicity

the POP metrics presented here are couched in terms of a distributed-memory message-passing

environment (e.g. MPI). For this the following values are calculated for each process from the

trace data: me doing useful computa on, me in communica on, number of instruc ons &

cycles during useful computa on. Useful computa on excludes me within the overheads of

parallelism.

At the top of the hierarchy is Global Efficiency (GE), which is used to judge overall quality of

parallelisa on. Typically, inefficiencies in parallel code have two main sources:

• Overheads imposed by the parallel nature of a code

D5.3 v1.0 32 / 91

• Poor scaling of computa on with increasing numbers of processes

and to reflect this we define two sub-metrics to measure these two inefficiencies. These are

Parallel Efficiency and Computa on Efficiency, and our top-level GE metric is the product of these

two sub-metrics:

GE = Parallel Efficiency * Computa on Efficiency

Parallel Efficiency (PE) reveals the inefficiency in spli ng computa on over processes and then

communica ng data between processes. Aswith GE, PE is a compoundmetricwhose components

reflect two important factors in achieving good parallel performance in code:

• Ensuring even distribu on of computa onal work across processes

• Minimising me communica ng data between processes

These are measured with Load Balance Efficiency and Communica on Efficiency, and PE is defined

as the product of these two sub-metrics:

PE = Load Balance Efficiency * Communica on Efficiency

Load Balance (LB) is computed as the ra o between average useful computa on me (across all

processes) and maximum useful computa on me (also across all processes):

LB = average computa on me / maximum computa on me

Communica on Efficiency (CommE) is the maximum across all processes of the ra o between

useful computa on me and total run me:

CommE = maximum computa on me / total run me

CommE iden fies when code is inefficient because it spends a large amount of me communicat-

ing rather than performing useful computa ons. CommE is composed of two addi onal metrics

that reflect two causes of excessive me within communica on:

• Processes wai ng at communica on points for other processes to arrive (i.e. serialisa on)

• Processes transferring large amount of data rela ve to the network capacity

These are measured using Serialisa on Efficiency andTransfer Efficiency. For a detailed descrip on

of these two submetrics, please refer to [5].

The final metric in the hierarchy is Computa on Efficiency (CompE), which are ra os of total me

in useful computa on summed over all processes. For strong scaling (i.e. problem size is constant)

it is the ra o of total me in useful computa on for a reference case (e.g. on 1 processor or 1

compute node) to the total me as the number of processes (or nodes) is increased. For CompE

to have a value of 1 this me must remain constant regardless of the number of processes.

Insight into possible causes of poor computa on scaling can be inves gated using metrics devised

from processor hardware counter data. Two causes of poor computa onal scaling are:

• Dividing work over addi onal processes increases the total computa on required

D5.3 v1.0 33 / 91

• Using addi onal processes leads to conten on for shared resources

these can be inves gated using Instruc on Scaling and Instruc ons Per Cycle (IPC) Scaling.

Instruc on Scaling is the ra o of total number of useful instruc ons for a reference case (e.g.

1 processor) compared to values when increasing the numbers of processes. A decrease in

Instruc on Scaling corresponds to an increase in the total number of instruc ons required to

solve a computa onal problem.

IPC Scaling compares IPC to the reference, where lower values indicate that rate of computa on

has slowed. Typical causes for this include decreasing cache hit rate and exhaus on of memory

bandwidth, these can leave processes stalled and wai ng for data.

7.3. Vector methodology

The main goal of this task is to create a vector analysis methodology that will allow to compare

applica on performance with respect to the vector arithme c behavior. The vector analysis

methodology is based on two main ideas. First, vector coverage, represen ng the por on of

code that has been actually vectorized. Second, vector efficiency, represen ng the actual length

of vector instruc ons with respect to the maximum allowed by the architecture. We defined

different metrics that may capture both coverage and efficiency of the vectorial behavior of

applica ons.

Dealing with vector coverage, we propose the following metrics:

• Arithme c Computa onal Density (ACD), measures the number of arithme c instruc ons

with respect to the total number of instruc ons.

• Arithme c Vector Density (AVD), measures the number of vector arithme c instruc ons

with respect to the total number of arithme c instruc ons.

Dealing with vector efficiency, we propose the following metric:

• Average Vector Length (AVL), measures the average vector length for all vector arithme c

instruc ons.

In addi on to these metrics, we also recommend to subs tute the Instruc ons Per Cycle (IPC)

measurement forOpera ons Per Cycle (OPC); due in applica ons sensi ve to use vector instruc-

ons the IPC is not as important as OPC, so the latest will be the target to maximize.

One of the main goals of these metrics is to be generic and they can be poten ally applied in any

HW architecture. In order to calculate them, the following set of HW counters is required:

• Set of counters to measure actual number of opera ons:

– BYTE_OPS: To count the number of arithme c byte type opera ons.

– HALF_OPS: To count the number of arithme c half-word type opera ons.

– WORD_OPS: To count the number of arithme c word opera ons.

D5.3 v1.0 34 / 91

• Set of counters to measure actual number of instruc ons:

– S_BYTE_INS: To count the number of arithme c scalar byte type instruc ons.

– S_HALF_INS: To count the number of arithme c scalar half-word type instruc ons.

– S_WORD_INS: To count the number of arithme c scalar word type instruc ons.

– V_BYTE_INS: To count the number of arithme c vector byte type instruc ons.

– V_HALF_INS: To count the number of arithme c vector half-word type instruc ons.

– V_WORD_INS: To count the number of arithme c vector word type instruc ons.

Provided that previous counters are available together with other well-known counters such as

INS (number of instruc ons) and CYC (number of cycles), the proposed vector analysis metrics

can be computed as follows:

Computa onal Density:

CD = S_BY TE_INS+S_HALF_INS+S_WORD_INS+V _BY TE_INS+V _HALF_INS+V _WORD_INS
INS

Arithme c Vector Density:

AVD = V _BY TE_INS+V _HALF_INS+V _WORD_INS
S_BY TE_INS+S_HALF_INS+S_WORD_INS+V _BY TE_INS+V _HALF_INS+V _WORD_INS

We can easily compute a new derived metric called Vector Computa onal Density (VCP) as the

product of Computa onal Density and Arithme c Vector Density (VCD=AVD*CD).

The Average Vector Length (AVL) can be computed per data type:

• AVL_b = BY TE_OPS
V _BY TE_INS+S_BY TE_INS

• AVL_h = HALF_OPS
V _HALF_INS+S_HALF_INS

• AVL_w = WORD_OPS
V _WORD_INS+S_WORD_INS

Or we can compute an aggregated value for all the types as:

AV L = BY TE_OPS+HALF_OPS+WORD_OPS
S_BY TE_INS+S_HALF_INS+S_WORD_INS+V _BY TE_INS+V _HALF_INS+V _WORD_INS

The Opera ons Per Cycle (OPC) metric can be computed as:

OPC = BY TE_OPS+HALF_OPS+WORD_OPS
CY C

If we want to consider also memory instruc ons, an extended set of HW counters is needed by

adding the following ones:

• L_BYTE_ST1: To count the number of load instruc ons (byte type, stride 1)

• L_BYTE_STN: To count the number of load instruc ons (byte type, stride n)

• L_BYTE_IND: To count the number of load instruc ons (byte type, indexed)

D5.3 v1.0 35 / 91

• L_HALF_ST1: To count the number of load instruc ons (half-word type, stride 1)

• L_HALF_STN: To count the number of load instruc ons (half-word type, stride n)

• L_HALF_IND: To count the number of load instruc ons (half-word type, indexed)

• L_WORD_ST1: To count the number of load instruc ons (word type, stride 1)

• L_WORD_STN: To count the number of load instruc ons (word type, stride n)

• L_WORD_IND: To count the number of load instruc ons (word type, indexed)

And the equivalent store versions: S_BYTE_ST1, S_BYTE_STN, S_BYTE_IND, S_HALF_ST1, S_-

HALF_STN, S_HALF_IND, S_WORD_ST1, S_WORD_STN, S_WORD_IND.

Our final goal is to use this set of metrics in the MEEP environments (RISC-V and ACME) but in

the mean me we have started working in x86 architectures due to: 1) some extra complexi es

arising from using PAPI in RISC-V architectures; and 2) the ac vity is a collabora on with the

POP2 Centre of Excellence, that usually apply performance analysis methodologies to commodity

clusters.

We defined the metrics we described previously, together with others that help us in the analysis,

in terms of the x86 PAPI counters available on MN4 for double precision instruc ons/opera ons:

• AVL= PAPI_DP_OPS
PAPI_V EC_DP

• OPC= PAPI_DP_OPS
PAPI_TOT_CY C

• IPC= PAPI_TOT_INS
PAPI_TOT_CY C

• ACD= PAPI_V EC_DP
PAPI_TOT_INS

• AVD=

=FP_ARITH:128B_PACKED_DOUBLE+FP_ARITH:256B_PACKED_DOUBLE+FP_ARITH:512B_PACKED_DOUBLE
PAPI_V EC_DP

When compiling we found the different compiler flags needed to enable/disable vectoriza ons

and se ng the vector length used by the hardware on an x86 architecture. In this regard, four

different set-ups have been tested for the different applica ons/benchmarks:

• AVX-512: flags to enable AVX-512 vectoriza on are used.

• AVX-2: flags to enable AVX-2 vectoriza on are used.

• NO FLAG: no specific flag related to vectoriza on is passed to the compiler.

• NO VEC: vectoriza on is explicitly disabled.

7.3.1. Valida on with sample codes

The following codes have been analysed following the methodology:

D5.3 v1.0 36 / 91

• vAdd (implemented synthe c kernel, see Lis ng 5, similar to the Add kernel part of the

Stream benchmark, see Sec on 8.1.1).

• DAXPY (implemented synthe c kernel, see Lis ng 6, same as the Axpy kernel part of the

RISC-V benchmarks presented in Sec on 8.2.1).

• FFTXlib (see Sec on 8.2.4 for a detailed descrip on).

• HPCG (see Sec on 8.2.3 for a detailed descrip on).

• CloudMicrophysics (see Sec on 8.2.5 for a detailed descrip on).

Two different modes of analysis have been envisioned: when the code is just one kernel (like

vAdd or DAXPY) we just capture the values of the HW counters for the whole execu on and

calculate the corresponding metrics.

Otherwise, it is, when we are dealing with more complex codes including mul ple func ons, we

use sampling. Extrae offers to use sampling mechanisms to gather performance data [15]. This

technique allows us to perform a differen ated study per func on, as one would expect different

vectorial behavior on each one.

We found out, however, that in most cases the sampling rate provided by Extrae was not enough

to capture with accuracy the real behavior. In these cases, we included two more techniques,

namely, clustering [14] and folding [16].

Cluster analysis is applied to detect different trends in the applica on computa on regions with

minimum user interven on. This detec on provides an unique insight of the applica on behavior

that serves as a star ng point to perform different types of analyses around the applica ons’

computa on structure.

The folding provides very detailed performance informa on of these code regions on itera ve and

regular applica ons. The folding combines the instrumenta on with the sampling informa on to

unveil the performance evolu on and to augment the details offered by simply using instrumenta-

on or sampling. The folding consists in collapsing all samples obtained in the different iden fied

clusters in the clustering phase into one synthe c representa ve instance of each cluster.

So, depending on the kind of code under study, the methodology is established as follows:

• Simple kernels: Extrae tracing + Paraver analysis.

• Benchmarks: Extrae tracing with Sampling to map HW counters readings with code func-

ons + Clustering + Folding to increase the number of samples per cluster + Paraver analysis.

The defined metrics have been gathered, first, for the two proposed synthe c kernels. The source

code for both synthe c kernels can be seen in Lis ng 5 (vAdd) and Lis ng 6 (DAXPY) respec vely.

#define LENGTH 80000000
void main(void) {

double y[LENGTH], x[LENGTH];
for(int i = 0; i < LENGTH; i++)

y[i] = x[i] + y[i];
}

Lis ng 5: vAdd source code.

D5.3 v1.0 37 / 91

Version AVL OPC IPC ACD AVD

AVX-512 8.00 0.20 0.18 0.14 1.00

AVX-2 4.00 0.19 0.32 0.15 1.00

NO FLAG 2.00 0.16 0.52 0.16 1.00

NO VEC 1.00 0.12 0.72 0.16 0.00

Table 2: vAdd results.

Version AVL OPC IPC ACD AVD

AVX-512 8.00 0.41 0.18 0.28 1.00

AVX-2 4.00 0.40 0.34 0.30 1.00

NO FLAG 2.00 0.25 0.46 0.27 1.00

NO VEC 1.00 0.16 0.57 0.28 0.00

Table 3: DAXPY results.

#define LENGTH 80000000
void main(void) {

double y[LENGTH], x[LENGTH];
double a = 3.0;
for(int i = 0; i < LENGTH; i++)

y[i] = a*x[i] + y[i];
}

Lis ng 6: DAXPY source code.

These metrics were obtained on BSC’s MareNostrum4, using Intel compiler version 17.0.4, and

for each version we highlight the following compila on flags:

• AVX-512: -qopenmp -O3 -xCOMMON-AVX512

• AVX-2: -qopenmp -O3 -xCORE-AVX2

• NO FLAG: -qopenmp -O3

• NO VEC: -qopenmp -O3 -no-vec

Results for vAdd synthe c kernel are presented in Table 2.

Regarding AVL, the observed behavior perfectly matches the theore cally expected. It looks

that AVX-512 instruc ons are really costly (this can be inferred by comparing with AVX-2, where

OPC is almost the same while keeping a rela vely higher IPC). Results in the IPC column are also

reasonable as vector instruc ons are costly. Both AVL and AVD columns allow for a sanity check

to confirm that the used compila on flags are working as expected.

Next, Table 3 presents the gathered metrics for DAXPY synthe c kernel.

Basically the same conclusions as for vAdd apply. In this case the values in OPC and ACD columns

double the ones shown for vAdd: this is also quite expected as in this case we are performing

two floa ng-point opera ons in each itera on of the loop (instead of just one).

D5.3 v1.0 38 / 91

Version AVL OPC IPC ACD AVD

AVX-512 1.08 1.28 2.27 0.52 0.01

AVX-2 1.07 1.26 2.31 0.51 0.02

NO FLAG 1.05 1.10 2.67 0.39 0.04

NO VEC 1.05 1.10 2.68 0.39 0.04

Table 4: FFTXlib results.

Version AVL OPC IPC ACD AVD

AVX-512 4.99 0.93 1.02 0.18 0.61

AVX-2 1.73 0.67 1.47 0.26 0.26

NO FLAG 1.73 0.69 1.65 0.24 0.73

NO VEC 1.00 0.64 1.75 0.36 0.00

Table 5: HPCG results.

To highlight the use of this vector analysis methodology, Table 4, Table 5, and Table 6 report the

average results obtained for the FFTXlib, HPCG, and the CloudMicrophysics kernel benchmarks

respec vely.

Overall, it can be seen that FFTXlib does not benefit from vectoriza on. Only a small increase

in both AVL and OPC can be observed when enabling longer vector lengths by compila on

flags (avx512 and avx2). This may be explained by the fact that this benchmark relies on scalar

instruc ons to perform all the required computa ons. This fact is also highlighted by the AVD

metric, which is the ra o between arithme cvector instruc ons and overall arithme c instruc ons

(as we can see, this value is almost zero). This behavior, however, is not uniform across all sampled

func ons as it can be seen in Table 7.

The HPCG benhmark presents be er numbers when compared to FFTXlib in terms of vector-

iza on. It can be seen that, for instance, AVL metric is more than half of the theore cal value

for the AVX-512 version. This is also underlined by the AVD value, which tell us that more than

half of the arithme c instruc ons executed are vector instruc ons. Table 8 presents the detailed

results spli ed by func ons for this benchmark.

Detailed (per func on) results for the CloudMicrophysics kernel are not provided as only one

func on is sampled (cloudsc_c) so the results are exactly the same than the average already

presented in Table 6.

Version AVL OPC IPC ACD AVD

AVX-512 1.31 0.47 1.73 0.21 0.04

AVX-2 1.27 0.49 1.83 0.21 0.09

NO FLAG 1.17 0.47 1.95 0.20 0.17

NO VEC 1.00 0.44 2.04 0.22 0.00

Table 6: cloudsc results.

D5.3 v1.0 39 / 91

Func on Coverage AVL OPC IPC ACD AVD

w_no_twiddle_32 11.48% 1.16 1.03 2.10 0.43 0.02

wi_twiddle_9 10.39% 1.01 1.81 2.98 0.60 0.00

w_twiddle_9 10.30% 1.01 1.79 2.97 0.60 0.00

wi_no_twiddle_32 9.01% 1.00 1.04 2.37 0.44 0.00

wi_no_twiddle_9 7.79% 1.01 1.81 2.98 0.60 0.00

w_no_twiddle_9 7.48% 1.00 1.80 2.99 0.60 0.00

prepare_psi 7.07% 2.00 0.28 0.63 0.22 1.00

test(MAIN_) 4.93% 3.95 1.46 0.88 0.42 0.42

_y_s ck_ 0.04% 0.99 2.46 2.46 0.41 0.00

Table 7: FFTXlib results for AVX-512 case detailed by func on. The coverage column represents

the percentage of the total execu on me spent in each func on.

Func on Coverage AVL OPC IPC ACD AVD

ComputeSYMGS_ref 71.45% 4.72 0.89 0.98 0.19 0.56

ComputeSPMV_ref 27.41% 5.95 1.05 1.12 0.16 0.75

Table 8: HPCG results for AVX-512 case detailed by func on. The coverage column represents

the percentage of the total execu on me spent in each func on.

D5.3 v1.0 40 / 91

8. Benchmarks descrip on

This sec on describes the set of benchmarks used to explore the performance of MEEP envi-

ronments. This set of benchmarks is divided into four categories: System, HPC, Data Analy cs

and Workflows. The performance analysis of all these benchmarks will be reported in deliverable

D5.4 - Final Release of the So ware Stack.

8.1. System benchmarks

This sec on describes the benchmarks used to explore the intrinsic performance of a system

in terms of memory system bandwidth (Stream) and overheads of common HPC programming

models such as OpenMP and MPI (EPCC OpenMP and EPCC OpenMP/MPI).

To test the benchmarks on all MEEP environments which have specific features, we have created

configura on files per environment and a set of make and run scripts to deal with all of this

diversity and to have an automa c methodology to build and run them. Therefore, from an user

perspec ve the steps needed to test any of the benchmarks on a specific pla orm are:

1. Compile the benchmark for the desired pla orm:

./make-meep-bench.sh <platform-name>

2. Configure the SLURM parameters for the desired run:

./configure -slurm <slurm-config>

3. Execute the benchmark for the desired pla orm:

./run-meep-bench.sh <platform-name>

In the end, the user will have all the results under the output folder, that will also include all the

compila on informa on.

8.1.1. Stream

Descrip on

The STREAM benchmark is a synthe c benchmark built with the intent of measuring the memory

bandwidth of accessing the main memory of a system (in MB/s), by execu ng simple vector

kernels (copy, scale, add and triad) [28]:

• Copy: c[i] = a[i]

• Scale: b[i] = s * c[i]

• Add: c[i] = a[i] + b[i]

• Triad: a[i] = b[i] + s * c[i]

D5.3 v1.0 41 / 91

Objec ves

As stated in the descrip on, Stream is used to measure the performance of accessing the main

memory system of a compu ng pla orm. In this project, we use Stream to evaluate the per-

formance of the en re memory system (from cache to main memory). Furthermore, Stream is

also used as a co-design tool in the development process of the various itera ons of the ACME

compu ng pla orms, with special focus on the memory architecture. Specifically, this benchmark

is used to test memory architecture features that are being deployed. By analyzing the resultant

performance, conclusions are drawn and feedback is provided to the hardware developers to aid

in the development of these compu ng pla orms.

Given that we are tes ng the memory bandwidth of various MEEP environments, reading memory

bandwidth inMB/s does not provide a clear picturewhen comparing them. Therefore, wemodified

Stream to report memory bandwidth in Bytes per Cycle (bytes/cycle):

bytes/cycle = M
T ∗

1
F ,

M is the total amount of memory involved in the test (in bytes), T is the execu on me of the

test (in seconds) and F is the clock frequency of the processor (in Hz).

Modifica ons

In the context of the MEEP project, we extended the capabili es of the Stream benchmark to

not only give us the bandwidth of accessing main memory but also to inspect the bandwidth of

the different cache levels of a system. Measuring the performance of the different cache levels

may present some challenges regarding the default ming model of Stream. Originally, Stream

iterates over NTIMES each specific kernel (copy, scale, add and triad):

for (i=0;i<NTIMES;i++){
time(start);
kernel();
time(end);

}

Which means that, depending on the size and complexity of the test and the granularity of the

ming model, we may get an invalid elapsed me. To circumvent this issue we moved the ming

opera ons outside of the for loop, and increased substan ally the NTIMES variable to make sure

that in the limit we get closer to a valid elapsed me and also to eliminate the loop overhead.

time(start);
for (i=0;i<NTIMES;i++){

test();
}
time(end);

Addi onally, we also modified the me func on from mysecond() that uses ge meofday() to

clock_ge me(). This allow us to have nanosecond resolu on which may be required to me the

tests that have small array sizes.

How are we able to measure the different cache levels bandwidth?

Even though we may not be able to accurately map each test to the desired cache level, one can

a empt to do so by varying the array sizes of each test. To exemplify this idea, let’s assume we

D5.3 v1.0 42 / 91

have a computer system with only one cache level with a size of Sc, a main memory of size Sm

and let’s us also define the test as a simple array copy, such that

for(int i=0;i<N;i++){
y[i]=x[i]

}

In this scenario, we will be working over two arrays of sizes Sx and Sy and to make sure that we

may be working on the cache we have to make:

Sx + Sy < Sc.

At the same me, to make sure we are accessing main memory we have to ascertain that:

Sc < Sx + Sy < Sm.

So ware release

We provide the source code and workload configura ons used to test each MEEP environment.

This is available at MEEP Benchmarks webpage (Stream table entry).

8.1.2. EPCC-OpenMP

Descrip on

The EPCC OpenMP benchmark measures the computa onal overhead in micro-seconds of

mul ple OpenMP direc ves [18, 20, 27].

Objec ves

From the complete set of OpenMP direc ves that this benchmark provides, we selected the

following subset:

• Synchronisa on direc ves

• Loop scheduling clauses

• Tasking constructs

Star ng with the selected synchroniza on direc ves, it is highlighted the important characteris-

cs and implica ons of each them:

• Parallel construct (Lis ng 7): Defines a parallel region with a specific number of threads.

All threads execute the code within this parallel region and at the end there is an implicit

barrier (synchronisa on point for all threads).

for (j = 0; j < innerreps; j++) {
#pragma omp parallel
{

delay(delaylength);
}

}

Lis ng 7: Benchmark source code that uses the parallel construct: All threads will execute the

D5.3 v1.0 43 / 91

https://release.meep-project.eu/benchmarks.html#system-benchmarks

delay func on.

• For loop construct (Lis ng 8): Used to parallelise the execu on of all itera ons in a for loop.

#pragma omp parallel private(j){
for (j = 0; j < innerreps; j++) {

#pragma omp for
for (i = 0; i < nthreads; i++) {

delay(delaylength);
}

}
}

Lis ng 8: Benchmark source code that uses the parallel construct followed by a omp for direc ve.

• Single construct (Lis ng 9): Define a region of code within a parallel region that is executed

by only one thread. The internal mechanism of control is by using a flag to define if a thread

should execute this region (when the flag is set other threads ignore this code region). There

is an implicit barrier at the end of this region.

#pragma omp parallel private(j)
{

for (j = 0; j < innerreps; j++) {
#pragma omp single
delay(delaylength);

}
}

Lis ng 9: Benchmark source code that uses the single construct: Only one thread will execute

the delay func on.

• Cri cal construct (Lis ng 10): Defines a sec on of code that can only be executed by one

thread at a me.

#pragma omp parallel private(j)
{

for (j = 0; j < innerreps / nthreads; j++) {
#pragma omp critical
{

delay(delaylength);
}

}
}

Lis ng 10: Benchmark source code that uses the cri cal construct: One thread at a me will

execute the delay func on.

• Atomic construct (Lis ng 11): Defines that a single statement that modifies the value of a

variable, in a parallel region, can only be executed by one thread at a me.

#pragma omp parallel private(j) firstprivate(b)
{

for (j = 0; j < innerreps / nthreads; j++) {
#pragma omp atomic
aaaa += b;
b *= c;

}

D5.3 v1.0 44 / 91

}

Lis ng 11: Benchmark source code that uses the cri cal construct: One thread at a me will

execute the aaaa +=b instruc on.

• Lock/unlock run me rou ne (Lis ngs 12):

omp_lock_t lock;
#pragma omp parallel private(j)
{

for (j = 0; j < innerreps / nthreads; j++) {
omp_set_lock(&lock);
delay(delaylength);
omp_unset_lock(&lock);

}
}

Lis ng 12: Benchmark source code that uses the lock/unlock rou nes: All threads will execute

the delay func on one at a me.

Following with the loop scheduling clauses:

• Sta c (Lis ngs 13): As the name states, this schedule mechanism assigns a fixed number

of itera on chunks to each thread (usually in a round-robin fashion). Importantly, the

major difference between sta c and guided is the fact that the assignment of itera ons

to threads is done before computa ons in the loop start, rendering this clause overhead

smaller compared with sta c and guided.

#pragma omp parallel private(j)
{

for (j = 0; j < innerreps; j++) {
#pragma omp for schedule(static,cksz)
for (i = 0; i < itersperthr * nthreads; i++) {

delay(delaylength);
}

}
}

Lis ng 13: Benchmark source code that uses the sta c schedule clause.

• Dynamic (Lis ngs 14): In this schedule mechanism, each thread executes a chunk of it-

era ons from the loop and then requests another, un l no more itera ons are le to be

executed.

#pragma omp parallel private(j)
{

for (j = 0; j < innerreps; j++) {
#pragma omp for schedule(dynamic,cksz)
for (i = 0; i < itersperthr * nthreads; i++) {

delay(delaylength);
}

}
}

Lis ng 14: Benchmark source code that uses the dynamic schedule clause.

• Guided (Lis ngs 15): Similar to dynamic, in the sense that each thread executes a chunk

and then requests another. However, the chunk size is computed differently, so that the

chunk size is progressively reduced as we reach the end of the itera on space.

D5.3 v1.0 45 / 91

#pragma omp parallel private(j)
{

for (j = 0; j < innerreps; j++) {
#pragma omp for schedule(guided,cksz)
for (i = 0; i < itersperthr * nthreads; i++) {

delay(delaylength);
}

}
}

Lis ng 15: Benchmark source code that uses the guided schedule clause.

Ending with the tasking constructs:

• Parallel task genera on (Lis ngs 16): Each thread in the team will iterate through its own

for loop and create a task that will execute the delay func on.

#pragma omp parallel private(j)
{

for (j = 0; j < innerreps; j ++) {
#pragma omp task {

delay(delaylength);
}

}
}

Lis ng 16: Benchmark source code that creates tasks by all threads. Each task is created to

execute the delay func on.

• Serial task genera on (Lis ngs 17): In this example only one thread iterates though a loop,

crea ng one task per itera on. Remaining threads wait at an implicit barrier.

#pragma omp parallel private(j)
{

#pragma omp master
{

for (j = 0; j < innerreps * nthreads; j++) {
#pragma omp task
{

delay(delaylength);
}

}
}

}

Lis ng 17: Benchmark source code that creates tasks by one thread. Each task will execute the

delay func on.

• Task tree genera on (Lis ngs 18): Genera on of tasks in parallel via recursive binary tree

func on.

#pragma omp parallel private(j)
{

for (j = 0; j < (innerreps >> DEPTH); j++) {
#pragma omp task
{

branchTaskTree(DEPTH);
delay(delaylength);

}

D5.3 v1.0 46 / 91

}
}

void branchTaskTree(int tree_level) {
if (tree_level > 0) {

#pragma omp task
{

branchTaskTree(tree_level - 1);
branchTaskTree(tree_level - 1);
delay(delaylength);

}
}

}

Lis ng 18: Benchmark source code that creates tasks by one thread. Each task will execute the

delay func on.

Regarding the ming model, and simply put, is defined as follows:

1. Get the reference me of the code region: tref

2. Get the me of the code region using the OpenMP direc ve: tomp

3. Compute OpenMP overhead: toverhead = tomp − tref

The EPCC-OpenMP benchmark is used to measure the overhead of the selected set of OpenMP

direc ves in clock cycles.

So ware release

We provide the source code and workload configura ons used to test each MEEP environment.

This is available at MEEP Benchmarks webpage (EPCC-OpenMP table entry).

8.1.3. EPCC-OpenMP/MPI

Descrip on

The EPCC-OpenMP/MPI benchmark measures the overhead for mixed-mode OpenMP/MPI

programming [19]. Specifically, this benchmark provides a set of micro benchmarks for both point-

to-point (for example, ping-pong, halo exchange among others) and collec ve communica ons

(for example, gather, sca er among others).

Objec ves

In MEEP we will focus on the following collec ve communica ons:

• MPI Gather & Sca er: The MPI sca er mechanism can be viewed as the process of sending

data from the root process to all processes in a set. MPI gather is quite the opposite, i.e., all

processes in a set send data to one single process.

• MPI AlltoAll & AllReduce: Involves the computa on of data from all processes and instead

of centralize the result in one process the results will be accessed to all processes.

D5.3 v1.0 47 / 91

https://release.meep-project.eu/benchmarks.html#system-benchmarks

• MPI Barrier: This is a synchroniza on mechanism, which means that all processes must

wait in a specific point un l every process in the set reaches that point.

And for point-to-point communica ons, we report the following:

• Master-only, point-to-point communica ons: MPI communica on takes place in the master

thread, outside of parallel regions.

• Master-only, halo exchange: All MPI processes par cipate and the processes are arranged

in a ring, where each process exchanges messages with its two neighbouring processes.

The metric used to measure the overhead of MPI communica ons is clock cycles.

So ware release

We provide the source code and workload configura ons used to test each MEEP environment.

This is available at MEEP Benchmarks webpage (EPCC-OpenMP/MPI table entry).

8.2. HPC benchmarks

This sec on lists and describes the set of HPC benchmarks selected to analyze the performance

of all available MEEP environments:

• RISC-V Benchmarks

• HPL - High-Performance Linpack

• HPCG - High Performance Conjugate Gradients

• FFTXlib

• CloudMicrophysics

• Advec on-MPDATA

Similar to what was described in the System benchmarks sec on, to test these benchmarks on

all MEEP environments which have specific features, we have created configura on files per

environment and a set of make and run scripts to deal with all of this diversity and to have an

automa c methodology to build and run them. Therefore, from an user perspec ve the steps

needed to test any of the benchmarks on a specific pla orm are:

1. Compile the benchmark for the desired pla orm:

./make-meep-bench.sh <platform-name>

2. Configure the SLURM parameters for the desired run:

./configure -slurm <slurm-config>

3. Execute the benchmark for the desired pla orm:

./run-meep-bench.sh <platform-name>

D5.3 v1.0 48 / 91

https://release.meep-project.eu/benchmarks.html#system-benchmarks

In the end, the user will have all the results under the output folder, that will also include all the

compila on informa on.

8.2.1. RISC-V Benchmarks

Descrip on

The RISCV-V Benchmarks [17] provide a large set of kernels that can be used to test simple

(also more complex) tradi onal HPC workloads. Moreover, this benchmark is targeted to run

on RISC-V pla orms, although it can also be run in other pla orms, provided some addi onal

configura on.

Objec ves

In the context of the MEEP project, we are focused on the following set of kernels:

• Axpy - Performs a mul ply and add opera on of arrays. y ← αx+y. A basic implementa on

of this mul ply-add opera on can be:

for (i=0; i<n; i++) {
dy[i] += a*dx[i];

}

• Gemm - General matrix mul plica on. C ← αAB + βC . A basic implementa on of the

matrix mul plica on can be:

for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {

for (int k = 0; k < K; k++) {
c[i][j] += a[i][k] * b[k][j];

}
}

}

This kernel generally represents a compute bound problem.

• SpMv - Sparse matrix-vector mul plica on opera on. y ← Ax:

for (row=0; row<nrows; row++) {
elem_t sum = 0.0;
for (idx=ia[row]; idx<ia[row+1]; idx++) {

sum += a[idx] * x[ja[idx]];
}
y[row] = sum;

}

• Somier - Is a kernel inspired in the old bed base model composed of a mesh of springs. For

each point of the mesh this kernel computes the posi on, accelera on and velocity of this

3D structure. Exemplifica on of the nature of the computa ons:

for(i = 0; i<n; i++) {
for(j = 0; j<n; j++) {

for(k = 0; k<n; k++) {
V[0][i][j][k] += A[0][i][j][k]*dt;
V[1][i][j][k] += A[1][i][j][k]*dt;

D5.3 v1.0 49 / 91

V[2][i][j][k] += A[2][i][j][k]*dt;
}

}
}

• FFT - This kernel uses the FFTW, a C subrou ne library for compu ng the discrete Fourier

transform (DFT) [22]. This is the most complex kernel as it integrates the FFTW library to

compute the Fourier Transform.

The set of selected kernels serve the purpose of analysing the behaviour of simple memory-

and compute-bound kernels running on all the available MEEP environments. Specifically, we

are focusing on mul -thread and vector instruc on performance. To this end we are primarily

targe ng the OPC metric in the context of the vector performance methodology.

Contribu ons

The RISC-V Benchmarks were developed in the context of the EPI project. The MEEP project

also contributed to the development of this repository of kernels, specifically:

• Establish a standard and common infrastructure to develop, build and run a kernel;

• Provide support for BLAS libraries for a small subset of kernels: Axpy and GEMM;

• Provide a new version for a subset of kernels that uses vector instruc ons based on the

OpenMP simd construct: Axpy, Gemm, Somier, SpMv;

• Addi onally, we also put forward a ”Baremetal” versions of a subset of kernels.

So ware release

The source code and workload configura ons used to test each MEEP environment are available

at MEEP Benchmarks webpage (RISC-V Benchmarks table entry).

8.2.2. HPL

Descrip on

HPL (High-Performance Linpack) is a portable implementa on of the High-Performance Lin-

pack benchmark and it solves a linear system of order N : Ax = b by first compu ng the LU

factoriza on [8]. It is wri en in C and requires an MPI and BLAS implementa on.

Objec ves

This benchmark is u lized to analyse the behaviour of more complex applica on pa erns in

the available MEEP environments. Specifically, we are focusing on mul -thread (supported by

OpenMP) and alsomul -node execu on (supported onMPI) for two different types of compila on

setups:

• scalar: where vectoriza on is disabled and therefore only scalar instruc ons are executed.

• vector: where auto-vectoriza on is enabled and therefore scalar and also vector instruc ons

D5.3 v1.0 50 / 91

https://release.meep-project.eu/benchmarks.html#hpc-benchmarks

are executed.

Regarding the performance analysis, we will evaluate the behavior of this benchmark using the

OPC metric in the context of the vector analysis methodology.

So ware release

The source code and workload configura ons used to test each MEEP environment are available

at MEEP Benchmarks webpage (HPL table entry).

8.2.3. HPCG

Descrip on

HPCG [26] is a so ware package that performs a fixed number ofmul grid precondi oned (using a

symmetric Gauss-Seidel smoother) conjugate gradient (PCG) itera ons using double precision (64

bit) floa ng point values. HPCG is intended as a complement to the High Performance LINPACK

(HPL) benchmark (Sec on 8.2.2), currently used to rank the TOP500 compu ng systems. The

computa onal and data access pa erns of HPL are s ll representa ve of some important scalable

applica ons, but not all. HPCG is designed to exercise computa onal and data access pa erns

that more closely match a different and broad set of important applica ons, and to give incen ve

to computer system designers to invest in capabili es that will have impact on the collec ve

performance of these applica ons.

HPCG is a complete, stand-alone code that measures the performance of basic opera ons in a

unified code:

• Sparse matrix-vector mul plica on.

• Vector updates.

• Global dot products.

• Local symmetric Gauss-Seidel smoother.

• Sparse triangular solve (as part of the Gauss-Seidel smoother).

• Driven by mul grid precondi oned conjugate gradient algorithm that exercises the key

kernels on a nested set of coarse grids.

• Reference implementa on is wri en in C++ with MPI and OpenMP support.

Objec ves

In the context of MEEP, we will evaluate the performance of the reference HPCG implementa on

in terms of OPC for the different kernels of the code (as provided by the output of the so ware

itself), in different pla orms. Wewill consider both OpenMP (for single-node execu ons) and MPI

(for mul -node execu ons) versions of the code and will evaluate its scalability for two different

compila on setups:

• scalar: where vectoriza on is disabled.

D5.3 v1.0 51 / 91

https://release.meep-project.eu/benchmarks.html#hpc-benchmarks

• vector: where auto-vectoriza on is enabled.

So ware release

The source code and workload configura ons used to test each MEEP environment are available

at MEEP Benchmarks webpage (HPCG table entry).

8.2.4. FFTXlib

Descrip on

FFTXlib is mainly a rewrite and op miza on of earlier versions of FFT related rou nes inside

Quantum ESPRESSO (QE) pre-v6; and finally their replacement. Despite many similari es, current

version of FFTXlib drama cally changes the FFT strategy in the parallel execu on, from 1D+2D

FFT performed in QE pre v6 to a 1D+1D+1D one; to allow for greater flexibility in paralleliza on.

FFTXlib module is a collec on of driver rou nes that allows the user to perform complex 3D

Fast Fourier Transform (FFT) in the context of plane wave based electronic structure so ware. It

contains rou nes to ini alize the array structures, to calculate the desired grid shapes. It imposes

underlying size assump ons and provides correspondence maps for indices between the two

transform domains.

Once this data structure is constructed, forward or inverse in-place FFT can be performed. For

this purpose FFTXlib can either use a local copy of an earlier version of FFTW (a commonly used

open source FFT library), or it can also serve as a wrapper to external FFT libraries via condi onal

compila on using pre-processor direc ves. It supports both MPI and OpenMP parallelisa on

technologies.

FFTXlib is currently employed within Quantum Espresso package [6], a widely used suite of codes

for electronic structure calcula ons and materials modeling in the nanoscale, based on planewave

and pseudopoten als.

Objec ves

In the context of MEEP, wewill evaluate the performance of this benchmark in terms of execu on

me for the different kernels of the code (as provided by the output of the so ware itself), in

different pla orms. We will consider the OpenMP version of the code and will evaluate its

scalability (when possible) for two different compila on setups:

• scalar: where vectoriza on is disabled.

• vector: where auto-vectoriza on is enabled.

So ware release

The source code and workload configura ons used to test each MEEP environment are available

at MEEP Benchmarks webpage (FFTXlib table entry).

D5.3 v1.0 52 / 91

https://release.meep-project.eu/benchmarks.html#hpc-benchmarks
https://release.meep-project.eu/benchmarks.html#hpc-benchmarks

8.2.5. CloudMicrophysics

Descrip on

CloudMicrophysics refers to an applica on developed in the context of the ECMWF Escape

project called Cloud microphysics scheme (for more informa on we refer the reader to document

D1.1 Batch 1: Defini on of several Weather & Climate Dwarfs [23]). Simply put, CloudMicro-

physics computes the cloud and precipita on processes that are present in the the IFS model.

Objec ves

The original source code provides a set of versions, however in MEEPwe focus on the Standalone

C version to test the performance of the available pla orms. Furthermore, this applica on is also

used as a co-design tool to test the autovectoriza on capabili es of the compiler used in MEEP

(LLVM-EPI).

In terms of performance analysis, CloudMicrophysics is used to explore the vector performance of

a more mature applica on on MEEP environments that contain hardware suppor ng this feature

(execu on of vector instruc ons). To this end, we will mostly focus on the OPC metric provided

by the vector analysis methodology.

Modifica ons

Given that CloudMicrophysics provides an en re infrastructure to build and run different version,

and aiming to reduce the complexity of this miniApp, we have removed all of the parts that were

not related with the C version of this code. Moreover, we removed the dependencies on the

build tools (Ecbuild and CMake) and have wri en a Makefile to have a more flexible and easy

way to build and run different configura ons of this applica on. This also allowed us to build

and deploy CloudMicrophysics on SDV compu ng pla orms that are characterized by the lack

of the common infrastructure that we have in produc on pla orms. Focusing on the relevant

kernels, we have modified the source code to explicitly vectorize most parts of the code. These

modifica ons entail the addi on at the beginning of for loops of vectoriza on direc ves such as

pragma pragma omp simd or pragma clang loop vectorize(enable).

Contribu ons

We have detected a bug in the C version that was reported to the maintainers with the sugges on

for a correc on (bug report [31]).

8.2.6. Advec on-MPDATA

Descrip on

Advec on-MPDATA also refers to another applica on developed in the context of the ECMWF

Escape project called MPDATA (mul dimensional posi ve definite advec on transport algorithm)

for unstructured meshes (for more informa on we refer the reader to document D1.1 Batch 1:

Defini on of several Weather & Climate Dwarfs [23]). Its purpose is to solve the PDEs modelling

the advec on on a sphere using an unstructured mesh with the MPDATA algorithm.

D5.3 v1.0 53 / 91

Objec ves

Advec on-MPDATA is used to understand the performance of running amore complex applica on

in the available MEEP environments. Given that this applica on uses MPI and OpenMP, we will

take advantage of Advec on-MPDATA to inspect the mul -thread and mul -node performance

of this applica on. Addi onally, we will also explore the vector performance of some parts of the

code that have been translated to C and therefore take advantage of compiler autovectoriza on

infrastructure.

Modifica ons

This applica on is wri en in Fortran and compared with CloudMicrophysics requires a more

complex infrastructure to build and run this applica on. However, we did not reduced this

complexity and instead ported some of the most me consuming func ons to C. Specifically,

we focused on two dis nct func ons: compute_fluxzdiv which is the most me consuming and

limit_scalar_flux that overall represents a bigger computa onal loop. These modifica ons will

allow us to take advantage of the autovectoriza on capabili es of the LLVM-EPI compiler as well

as the VPU hardware of MEEP.

8.3. Data Analy cs benchmarks

This sec on describes the benchmarks used to explore common data analy cs performance on

MEEP environments. We use two data analy cs run mes:

• TensorFlow is a free and open-source so ware library for machine learning and ar ficial

intelligence. It can be used across a range of tasks but has a par cular focus on training and

inference of deep neural networks. Due to the build system did not support for RISC-V on

MEEP we employ TensorFlow Lite framework. TensorFlow Lite only provides inference and

it is designed focusing on edge environments. As earlier explained we have enabled the

run me on our RISC-V pla orms. TensorFlow has become commodity for training models.

In the context of MEEP project we will use the three main neural networks from which

most works derive: MobileNet, ResNet50 and VGG-19. Addi onally we use MNIST as a

func onality checker, as it has become the ”hello world” for deep learning.

• Apache Spark is a mul -language engine for execu ng data engineering, data science and

machine learning on single-node machines or clusters. It allows for either batch or streaming

data with languages such Python, SQL, Scala, R or Java. Its main feature is that it brings

data closer to the place where it is computed: i.e, moves data from disk to memory for

faster processing. Thus increasing the performance over tradi onal big data. It has become

a commodity technology for data mining and machine learning.

8.3.1. TensorFlow Lite models

Descrip on

Given that TensorFlow lite does only inference, we use pre-trained models. Over the trained

model we use a synthe c benchmark to assess inference mings over the model.

D5.3 v1.0 54 / 91

The models are a set of neural networks representa ve of current data analy cs architectures.

The selected networks are:

• MNIST [29]: its input is a set of 10 hand-wri en numbers from 0 to 9. It iden fies the

corresponding hand-wri en number. It is widely used as a hello world for deep learning.

• VGG-19 [36]: VGG19 is a variant of VGG model, which in short consists of 19 layers (16

convolu on layers, 3 Fully connected layers, 5 MaxPool layers, and 1 So Max layer). There

are other variants of VGG like VGG11, VGG16, and others. VGG19 has 19.6× 109 FLOPs.

• ResNet50: ResNet50 is a variant of the ResNet [24] model, which has 48 Convolu on layers

along with 1 MaxPool and 1 Average Pool layer. It has 3.8× 109 FLOPS. It is a widely used
ResNet model.

• MobileNet [25]: the MobileNet model is based on depthwise separable convolu ons, which

is a form of factorized convolu ons that factorize a standard convolu on into a depthwise

convolu on and a 1× 1 convolu on called a pointwise convolu on.

We train each of the selected models, and we get a pre-trained graph for each of the models.

From there, the benchmark consists of taking an input graph and an input image. Then, it runs

inference over 50 itera ons (parametrizable) and outputs the average inference me and standard

devia on, as well as the fastest and longest inference mings.

Objec ves

The benchmark is highly parametrizable in all its components. The parameters we will explore for

the benchmark are:

• Input images: all images that will be inferred on each itera on of the benchmark.

• Use xnnpack (boolean): whether or not to enable XNNPACK [7] algebraic op miza ons.

Highly benefits performance if vectorial instruc ons are enabled.

• Num threads: number of threads to be used for TFLite

• Allow fp16 (boolean): whether or not to enable FP16 opera ons. It will be used depending

on what architectures provide.

• Num runs: the number of itera ons to be done for each input. Default: 50.

• Graph: the model to be used for inference.

• Dry run: if true, does an execu on loading the model and alloca ng tensors but without

any computa on (i.e., inference) performed.

• Warmup parameters: parameters to define how many inference itera ons (or amount of

seconds) to do before running the actual benchmark.

• Use caching (boolean): to enable or not the use of cache.

• Run frequency: to execute at a given frequency rather than a given delay. By default, the

benchmark waits a pre-set me between inferences. However, we can define target frames

D5.3 v1.0 55 / 91

per second. If not possible, the benchmark will ini ate the next itera on without wai ng

for the comple on of the previous one, doing its best to catch up.

• Run delay: delay seconds between inference itera ons.

• Max seconds: maximum seconds for the benchmark to complete. If exceeding mid-itera on,

the benchmark will complete the itera on but will stop a erward. Default: 150s.

• Min seconds: minimum seconds to re-iterate for. Possible to make the number of inference

itera ons done higher than the set.

The general metric to be used will be frames per cycle. Generally speaking, frames per second are

the most used measure of performance. However in the MEEP project we have several pla orms

with very different clock frequencies and characteris cs. Consequently a be er measure is to

translate seconds into cycles.

So ware release

The pre-trained models are offered as an addi onal RPM package which can be found at MEEP

Data Analy cs Benchmarks webpage.

8.3.2. Spark Epistasis use case

Descrip on

Epistasis is the interac on between genes that influences a phenotype. Genes can either mask

each other so that one is considered “dominant,” or they can combine to produce a new trait. It is

the condi onal rela onship between two genes that can determine a single phenotype of some

traits.

An HPC applica on has been developed to find all these interac ons. The applica on uses

Apache Spark to move the data from disk to memory. Since genome data is massive, the genome

is split into smaller par ons. Once each of the par ons is moved in memory by Spark, the

applica on leverages numpy to make the computa onal part.

Objec ves

The objec ve of the workload is to compute as many varia ons as possible in the lesser me

possible. Consequently our base metric will be cycles. Instead of using the tradi onal seconds, as

we have said earlier, it is a be er measure when comparing with very different clock frequencies

among the different MEEP environments.

The parameters we can tune by the workload are:

• Vectorial vs non-vectorial: performance x86with vectorial instruc ons vs without vectorial

instruc ons (useful to compare with RISC-V pla orms).

• Number of nodes: limited number on arriesgado due to availability. We can’t do mul -node

tes ng on SDV or ACME-EA v0 (unless more nodes available with Ethernet communica on)

• Number of Pa ents: use different cohorts with different amounts of pa ents.

D5.3 v1.0 56 / 91

https://release.meep-project.eu/benchmarks.html#benchmark-tflite
https://release.meep-project.eu/benchmarks.html#benchmark-tflite

• Par on sizes: dataset par on sizes. The number of samples that are processed at the

same me.

• Cross Valida on sets: use a 5-fold CV or a 10-fold CV.

• Network usage: relevant in the case of mul -node runs.

So ware release

The Epistasis use-case RPM can be found at MEEP Data Analy cs Benchmarks webpage.

8.4. Workflows benchmarks

One part of the MEEP So ware Stack is devoted to the development and orchestra on of

parallel and distributed workflows with COMPSs. In this sec on, we present a set of Workflows

implementedwith PyCOMPSs (the Python binding of COMPSs) which could take benefit ofMEEP

capabili es. In the first part of the sec on, we present a set of dislib algorithms which implement

distributed workflows for ML. In the second part of the sec on, we present another workflow

use case which is focused on Hyper-Dimen onal Compu ng.

The So ware release of these workflows can be found in the MEEP Workflows Benchmarks

webpage

8.4.1. Dislib Algorithms

Descrip on

The Distributed Compu ng Library is a machine learning library that is built on top of PyCOMPSs,

thus provides machine learning algorithms that are distributed and parallel. The library focuses

on the execu on of data analysis algorithms on distributed pla orms such as supercomputers.

QR Decomposi on QR decomposi on is the decomposi on of a matrix into a QR product. A

more formal descrip on would be the following: Let A be am× nmatrix wherem > n, this can
be decomposed in a product of an orthogonal matrix Q (a real square matrix that all of its rows and

columns are orthonormal vectors) and an upper triangular matrix R.

There are several algorithms that perform such decomposi on, which is usually used for cal-

cula ng the linear least squares. The most common algorithms are the Gram-Schmidt process,

Householder-Transforma ons, and several modifica ons of the past two. In dislib, the algorithm

that is used is the Householder-Transforma ons with a block factoriza on.

Matrix Mul plica on (MATMUL) Matrix mul plica on is a classic algorithm that consists of

mul plying two matrices. Even though this may seem an easy problem it needs a high computa-

onal power when the sizes of the matrices increase, the asympto c cost is O(n3).

D5.3 v1.0 57 / 91

https://release.meep-project.eu/benchmarks.html#benchmark-epistasia
https://release.meep-project.eu/benchmarks.html#workflow-benchmarks
https://release.meep-project.eu/benchmarks.html#workflow-benchmarks

To parallelize the applica on, dislib approaches the problem by dividing the mul plica ons

matrices into smaller ones, this way parallelizing the computa ons.

Cascade Support Vector Machine (CSVM) This is an algorithm that is used for classifying data

in a supervised environment. As opposed to linear regression, the SVM can perform an efficient

classifica on of non-linear data, using a kernel trick.

In the case of parallel environments, the SVM algorithm can be adapted to a CSVM. This is the

case of dislib’s CSVM, which is based on Graf et al. implementa on. This implementa on creates

a cascade-like structure that will allow the algorithm to be parallelized. Therefore the algorithm

will break the datasets into N sets that will be trained separately and then will be merged in pairs

to compute the support vectors, this is going to be done itera vely un l a single set emerges.

KMeans This algorithm belongs to the clustering algorithms family. When using this algorithm

the user has to have an idea of howmany clusters will the dataset have, since one of the algorithm

parameters is the number of clusters (K). This algorithm usually starts with K (the number of

defined clusters by the user) randomly set centers in the space. Then it assigns to every data

point a single center based on the closest distance to it. A er assigning the points each center is

recalculated to be set in the new center for all the points assigned. Then this process is done

itera vely un l the centers converge (are not updated from their posi on).

The parallel version is performed by crea ng one task for every row in a block of the ds-array.

Then reduc on is performed, which adds all the data points that belong to a center.

Gaussian Mixture Model (GMM) This algorithm is used to represent the distribu on of a series

of data as the sum of several Gaussian components. Those are assumed to be generated from a

mixture of Gaussian distribu ons. The goal of this algorithm is to maximize the likelihood of the

model that is generated to describe the data. Similar to KMeans, this is a clustering algorithm.

However, in this case, there is no need to define the number of clusters, so it can be considered

unsupervised learning.

Random Forest Classifier (RF) This algorithm is used to classify data in different classes. It

creates a series of decision trees that will use to aggregate their predic ons. The use of the

random forest instead of a single decision tree classifier is helpful since most applica ons will

have a higher predic on when aggrega ng the predic ons compared to when a single one is

used.

Objec ves

The objec ve has been to check the distribu on. Moreover, we wanted to evaluate in MEEP

the kernel accelera on using vectorized mathema cal libraries with single and mul core and

comparing to execu ng with scalar instruc ons. Furthermore, another main objec ve has been

to execute using mul ple worker nodes and see the performance of MEEP when using mul ple

nodes to execute the applica on.

The performance analysis has been done by comparing the execu on mes of the applica ons

using different mathema cal accelera on libraries (different versions of BLIS). Addi onally, using

D5.3 v1.0 58 / 91

Extrae we have also evaluated the parallelism and execu on mes of different parts in the

applica on func ons.

Modifica ons

To run in the ACME EA pla orm, no code modifica ons are required. However to get benefit

of the accelera on provided by the pla orm, users have to use a Numpy version which is able

to use the accelerated BLIS. To do it, the user has to compile Numpy specifying the BLIS library

loca on as explained in Sec on 5.7 and add the Numpy installa on loca on to the PYTHONPATH

environment variable.

8.4.2. Hyper-Dimensional Compu ng (HDC)

Descrip on

Hyper-Dimensional Compu ng also known as Vector Symbolic Architecture, is a compu ng

framework that tries to emulate the animal nervous system. It does so by represen ng the space

using the proper es of high-dimensional random vectors. The higher level idea is to represent

informa on x ∈ X by protec ng it to the X hyperspace with d dimensions, usually those being
10.000. The space is usually represented as binary H = {0, 1}d or bipolar H = {−1, 1}d. One
essen al part of HDC is encoding the data, therefore it is needed to create a mapping from

the data space, to the hyperspace φ : X → H. The encoding has the property that vectors are
holographic. In itself this means that the dimensions of the hypervectors are independent and

iden cally distributed, this allows the hypervectors to be robust and each dimension carries the

same amount of informa on.

Beijing PM2.5 pollu on This applica on tries to assess the pollu on in Bejing by learning from

different features from the dataset 1. From these features, metrics such as pressure, wind

direc on, wind speed, accumulated snow, accumulated rain, dew point, PM2.5, can be extracted,

addi onally, there is me data, which is an hour, day, and month. For this learning task, the aim is

to be able to predict the temperature.

This applica on is used to show the different predic on accuracy depending on the basis hyper-

vector used for encoding the data. The aim is to show that using circular hypervectors will have a

be er accuracy result since there is the me data that can be represented using circular data.

Objec ves

The objec ve has been to check the distribu on. Moreover, we wanted to evaluate in MEEP

the kernel accelera on using vectorized mathema cal libraries with single and mul core and

comparing to execu ng with scalar instruc ons. Furthermore, another main objec ve has been

to execute using mul ple worker nodes and see the performance of MEEP when using mul ple

nodes to execute the applica on.

The performance analysis has been done by comparing the execu on mes of the applica ons

using different mathema cal accelera on libraries (different versions of BLIS). Addi onally, using

1https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data

D5.3 v1.0 59 / 91

https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data

Extrae we have also evaluated the parallelism and execu on mes of different parts in the

applica on func ons.

Contribu ons

This HDC applica on has been ported to the COMPSs framework, therefore parallelizing it. Apart

from that, to get benefit of the accelera on provided by MEEP, the user has to use a Numpy

version which is able to use the accelerated BLIS. To do it, the user has to first install Numpy

specifying the BLIS library loca on as explained in Sec on 5.7 and add the installa on loca on

to the PYTHONPATH environment variable.

8.5. Systolic Array benchmarks

In D5.1 Benchmark suite of HPC applica ons we also included the MLPerf and the Bolt66-App as

part of the benchmarks suite. These applica ons aim to func onally validate the implementa on

of the two MEEP Systolic Arrays, as well as to evaluate their performance.

We will present the applica on por ng as well as its evalua on in the upcoming deliverable

D5.4 Final release of the so ware stacked (M42). The applica on por ng will leverage the custom

instruc ons presented in Sec on 4.3 and detailed in Appendix A.

D5.3 v1.0 60 / 91

9. The MEEP Offload Mode

In this sec on we present the Offload Mode of the MEEP accelerator, and the support required

for single and mul ple devices.

9.1. Single-device support

We have implemented a prototype infrastructure suppor ng OpenMP offload between the

Intel Host, ac ng as the applica on runner, and the RISC-V on the FPGA, ac ng as the device

accelerator.

In this sec on we present the compiler and run me infrastructure that we have implemented for

this purpose. It is based on a previous implementa on done by FORTH (Crete, Greece), in the

context of the EPI project, that we have adapted to the MEEP environment.

9.1.1. Compiler support for MEEP offload

The support for the MEEP offload uses the code generated from the LLVM compiler. For the

MEEP offload, the compiler is invoked to compile for an Intel Host and a RISC-V target device. It

has been configured to generate x86_64 code for the Host and RISC-V rv64imafdc code for the

RISC-V as an accelerator.

When configured, the compiler generates code for the OpenMP direc ves in such a way that

the regular code runs in the Intel architecture, and the code annotated with the target direc ve

is spawned onto the RISC-V accelerator. LLVM is able to encapsulate the RISC-V binary as a

target sec on in the host binary. The management of the RISC-V code is le to the libomptarget

LLVM-OpenMP support library.

9.1.2. Run me support for MEEP offload

The support for OpenMP target on the Host side is implemented as a plugin to the libomptarget

library. In our case, we have adapted the plugin developed by FORTH in the EPI project to work

with the RISC-V accelerator on the FPGA.

Currently, the support that has been implemented on the prototype covers these services:

• Support the Host side communica ons with the target device.

• Check and transfer the RISC-V binary to the RISC-V environment.

• Determine the number of devices available. We currently support a single one.

• Ini aliza on and finaliza on of the applica on on the device side.

• Alloca ng and dealloca ng data areas for the device.

D5.3 v1.0 61 / 91

Figure 5: Diagram of the MEEP Offload infrastructure

• Transfer data into the device, and out of the device.

• Manage the target regions of code to run code onto the device.

The current implementa on is missing the following func onali es:

• Manage the target teams regions.

• Asynchronous management of data transfers.

• Asynchronous management of code regions.

Figure 5 shows the way communica ons are implemented between the Host and the RISC-V.

The communica ons are implemented through a specific shared memory area laid out between

the Host and the RISC-V (Data-xchg). This shared memory region is implemented either as a

BlockRAM in the FPGA chip, or as part of the DRAM/HBM memory on the FPGA board. This

shared memory area is accessed using the QDMAdriver services for DMA transfers. In the current

implementa on the DMA transfers issued through the QDMA driver are not interac ng with the

Openpiton memory hierarchy on the RISC-V side. Any data that is actually on the processors

cache memory is not invalidated when a DMA transfer happens from the Host side. For this

reason, the prototype cannot use the full range of HBM memory to support large data structures.

The shared memory area is implemented in the I/O space, and thus is not cached by Openpiton

in the cache hierarchy. We have implemented this infrastructure as a demonstrator prototype,

not full-fledged, so no addi onal copies are done between the reduced-size memory in the I/O

space, and the Offload server memory. This reduces the size of the applica on data to only a few

tens of Kbytes.

The shared memory area is structured as a small descriptor containing the iden fier of each

service requested, and a specific slot area that is structured according to each service requested.

The descrip on of the services is presented in sec on 9.1.3.

D5.3 v1.0 62 / 91

9.1.3. RISC-V side offload support

On the RISC-V side we run a server that waits for requests for target offload commands from the

host.

When transferring a binary file, it is temporarily stored in the slot area, saved in the local file

system on the RISC-V side, and then loaded into the server applica on space.

The target binary has a specific entries sec on, that is used to find the symbols that can be invoked

as OpenMP target regions. This sec on is used every me that a new target region is invoked

from the host, through the offload target region service.

Before invoking a target region, the Host code allocates the data regions needed, and copies the

input data for the variables marked as to.

The offload target region service receives a func on iden fier and its arguments. The server

uses the services of the foreign-func on interface (libffi) in order to invoke the proper func on

implemen ng the requested region, with its associated arguments.

A er the execu on of a region, the Host code transfers the data out for those variables marked

as from.

9.1.4. Tes ng

We have tested the prototype infrastructure with a pair of examples:

• A test sample showing the ability to ini alize and copy data.

• A matrix mul plica on example.

With these tests we demonstrated the feasibility to implement the OpenMP offload services on

the MEEP environment.

9.1.5. BLIS single-device approach

The offload execu on mode of BLIS differs from the self-hosted mode in the sense that when

the host launches the applica on and we have a call to a BLIS service, the respec ve workload is

offloaded to the available accelerators in the compu ng pla orm. Specifically, we offload and

distribute the workload in two different forms: 1) The work performed from BLIS is offloaded

to only one accelerator (single-device) or 2) the workload is distributed among a set of devices

(mul -device approach).

The BLIS single-device approach explora on was developed using a compu ng pla orm that is

characterized by a host (CPU) and a set of connected accelerators (GPUs). Moreover, to offload

computa ons from the host to the accelerator we relied on the OpenMP programming model,

specifically the omp target construct.

Next, we highlight the nature of adapta ons that are needed for an applica on to take advantage

D5.3 v1.0 63 / 91

of the BLIS offload version. Thus, we have to make two clear dis nc ons: first, the modifica on

in the applica on side that the end user has to perform and second, the modifica ons on the

BLIS library. From the applica on side, the user should be responsible for crea ng a data shared

environment using the #pragma omp target data map direc ve (see Lis ng 19). This will allow

the re-u liza on of data on the accelerator and no extra communica ons between host and

accelerator are needed, because we are working with data that lives in the device (with the

excep on of synchroniza on that might need to occur if the host updates variable that are in the

device).

int main(){
// Initalization phase ...
init(x,y);
// 1st set of computations ...
// Offload BLAS computations to accelerator
#pragma omp target data map(to:x[0:n]) map(tofrom:y[0:n])
{

// 1st call to a BLIS routine
cblas_daxpy(n, scalar, x, 1, y, 1);
// 2nd call of a BLIS routine
double dot_product = cblas_ddot(n,x,1,y,1);
// More BLIS routine calls ...

}
// More computations ...
// Final ...

}

Lis ng 19: Example of an applica on that defines a data shared environment where a set of BLIS

rou nes are called.

Themodifica ons needed in the BLIS library share similari eswith the applica on side, specifically,

here we also have to create a data shared environment. The addi onal step is the inclusion of the

#pragma omp target teams distribute parallel for (see Lis ng 20) direc ve before the for loops so

that the workload is actually divided and computed by the accelerator.

void PASTEMAC3(ch,opname,arch,suf)(conj_t conjx,dim_t n,
ctype* restrict x,inc_t incx,ctype* restrict y,
inc_t incy,cntx_t* restrict cntx)

{
// ...
_Pragma("omp target data map(to:x[0:n]) map(tofrom:y[0:n])")
{

ctype* restrict chi1 = x;
ctype* restrict psi1 = y;

if (bli_is_conj(conjx)) {
if (incx == 1 && incy == 1) {

_Pragma("omp target teams distribute parallel for")
for (dim_t i = 0; i < n; ++i) {
PASTEMAC(ch,addjs)(chi1[i], psi1[i]);

}
}
else {

// ...
}

}
}

Lis ng 20: Example of the nature of modifica ons done in the BLIS kernels.

D5.3 v1.0 64 / 91

Figure 6 shows a meline of an applica on that calls three BLAS kernels (in this example the

vector addi on). We can decompose this figure in three phases:

• In the first phase we have the transfer of data from host to device that corresponds to the

two arrays (x and y) that we are upda ng (shown in the figure as the top dashed-green box).

• The second phase (middle dashed-red box) demonstrates the call of the three BLAS level 1

kernels.

• The third phase (bo om dashed-green box), shows the retrieving of the data a er all

computa ons have been finished in the accelerator.

Figure 6: Time profile of an applica on that calls three mes the BLAS vector addi on kernel,

using Nvidia’s profiler tool. Time dimension is read in each row, while the type of computa ons

can be seen in the last column (column called Name with a ributes such as CUDAmemcpy HtoD,

bli_daddv_generic_ref, among others).

For BLAS levels 1 and 2, this analysis demonstrates that we have a successful offload and

re-u liza on of data, as we do not see any memory opera ons in between the BLAS kernel

execu ons. However, for BLAS level 3 kernels, we do not achieve the same behaviour, therefore,

we are not able to apply the same methodology. Yes, it is true that we have a successful offload

of the BLIS rou nes to the accelerator, but we are not able to reuse data. Hence, we end up

with extra communica ons in between host and device, when calling consecu ve BLAS level 3

kernels. This behaviour is shown in Figure 7, where we can report the following:

• First phase with the transfer of data from host to the accelerator (top dashed-green box).

• In the next phase we can group the three calls to the matrix mul plica on BLAS kernel

(red-dashed boxes). Here, we can observe that in between BLIS kernel calls there are two

sets of data transfers from the host to the accelerator (dashed-green boxes). It is true that

during the en re execu on of each BLIS kernel we have data re-use, altough in between

kernel calls we observe data transfers and if data was being reused, these data transfers

between the kernels calls should not be present. This should be true because we already

transferred this data in the beginning of the computa ons and all kernels work over the

same data. This behaviour might be explained by the fact that the OpenMP run me is not

able to detect that new alloca ons for this data are done by the BLIS infrastructure.

• The last phase is characterized by the retrieving of the resultant matrix to the host side

(bo om dashed-green box).

In summary, we achieve the desired behaviour for BLAS 1 and 2 levels, but there is no re-u liza on

of data for the third BLAS level and thus a different approach should be devised to achieve a

re-u liza on of data in the accelerators.

D5.3 v1.0 65 / 91

Figure 7: Time profile of an applica on that calls three mes the BLAS vector addi on kernel,

using Nvidia’s profiler tool. Time dimension is read in each row, while the type of computa ons

can be seen in the last column (column called Name with a ributes such as CUDAmemcpy HtoD,

bli_dgemm_generic_ref, among others).

9.2. Mul -device support

One of the possible scenarios considered earlier in the MEEP project was that a single node could

offer many accelerators where work could be offload to. This led us to iden fy a gap in OpenMP

support for offloading.

OpenMP has offloading support since version 4.0. However, the interface offered by OpenMP

only allows offloading to a single device at a me. Under a context of a host node with many,

regular, accelerators, OpenMP does not offer convenient syntax for this use case.

9.2.1. OpenMP extensions

We proposed an extension to OpenMP in which we introduce a new OpenMP construct called

target spread. Instead of receiving a single device clause, the spread construct has a devices
clause which represents the set of devices that will execute the offloaded region. Rather than

choosing a design similar to that of the OpenMP parallel construct, where execu on would be

replicated among devices, we chose to constraint target spread to OpenMP loops.

Constraining ourselves to loops allows us to introduce two special values, omp_spread_start
and omp_spread_size which represent the set of itera ons that a device executes. Our ini al

implementa on focused on a sta c scheduling approach: the itera ons are divided among devices

using a chunk size that can be specified by the user. Lis ng 21 shows an example of the target
spread construct applied to a SAXPY kernel.

void saxpy_multi_dev(int n, float a, float *x, float *y) {
#pragma omp target spread \

devices(0, 1, 2, 3) \
spread_schedule(static, 1024) \
map(to: a[omp_spread_start:omp_spread_size]) \
map(tofrom: y[omp_spread_start:omp_spread_size])

for (int i = 0; i < n; ++i)
y[i] = a * x[i] + y[i];

D5.3 v1.0 66 / 91

}

Lis ng 21: Example of the target spread construct applied to a simple SAXPY kernel.

One limita on of centering the extension around loops is that data transfers in OpenMP can be

defined at arbitrary parts of the code. We generalised the data transfer constructs into spread

versions. The mul ple devices context was defined in a new clause called range. Lis ng 22

shows the spread version of data transfer constructs OpenMP. Lis ng 23 shows that the same

syntax can be used in the scoped target data construct.

#pragma omp target enter data spread \
devices(2,0,1) \
range(1:N-2) \
chunk_size(4) \
nowait \
map(to:A[omp_spread_start -1:omp_spread_size+2], \
B[omp_spread_start :omp_spread_size])

#pragma omp target exit data spread \
devices(2,0,1) \
range(1:N-2) \
chunk_size(4) \
nowait \
map(from:A[omp_spread_start:omp_spread_size], \
B[omp_spread_start:omp_spread_size])

#pragma omp target update spread \
devices(2,0,1) \
range(1:N-2) \
chunk_size(4) \
nowait \
to(A[omp_spread_start -1:omp_spread_size+2]) \
from(B[omp_spread_start :omp_spread_size])

Lis ng 22: Example of the target {enter|exit|update} data spread constructs

#pragma omp target data spread \
devices(2,0,1) \
range(1:N-2) \
chunk_size(4) \
map(tofrom:A[omp_spread_start -1:omp_spread_size+2], \
B[omp_spread_start :omp_spread_size])

{
...

}

Lis ng 23: Example of the target data spread construct

9.2.2. Compiler support for mul -devices

The proposal of the previous sec on was implemented in the C/C++ frontend of LLVM. Very

minimal changes were done to the run me, only to support a new kind of schedule for the loops

that we marked as target spread.

Clang lowers its C/C++ input, represented in the frontend using the Clang AST, directly into

LLVM IR which already contains calls to the run me. Our proposal can be seen as another kind

D5.3 v1.0 67 / 91

of desugaring from OpenMP to the OpenMP run me func ons. In our case it was possible to

express our transforma on in the form of the exis ng target construct.

The implementa on has been tested on a system equipped with four NVIDIA A100 GPUs.

9.2.3. Middle-ware extensions

In a mul -device environment, each accelerator will have a range of DMA-capable memory, to be

used for the Host – Accelerator communica ons.

Suppor ng mul ple devices for the MEEP offload mode will require to update the libomptarget

LLVM-OpenMP support library to access these separate memory areas for the implementa on

of the DMA transfers to the different accelerators.

The OpenMP infrastructure already supports Accelerator-IDs, in order to operate with different

accelerators, and is able to distribute the work from a target loop onto them.

9.2.4. BLIS mul -device approach

The explora on done in this context is purely a conceptual formula on of how this approach

should behave. Thus, the BLIS mul -device approach should follow a similar pa ern as shown in

the BLIS single-device approach sec on. This means that in the applica on side a data parallel

environment is created (Lis ngs 24) using the target data spread construct. Here, we should

define the variables that are going to be offloaded to the mul ple devices. The set of mul ple

devices can be defined as a variable (DEVICESET) that is set manually or inquired by the run me.

By default each offloaded variable will be divided into chunks as a func on of the number of

devices.

int main(){
// Initalization phase ...
init(x,y);
// 1st set of computations ...
// Offload BLAS computations to accelerator
#pragma omp target data spread \
map(spread(devices(DEVICESET),range(0:n)), \
to: x[omp_chunk_start:omp_chunk_size]) \
map(spread(devices(DEVICESET),range(0:n)), \
tofrom: y[omp_chunk_start:omp_chunk_size])
{

// 1st call to a BLIS routine
cblas_daxpy(n, scalar, x, 1, y, 1);
// 2nd call of a BLIS routine
double dot_product = cblas_ddot(n,x,1,y,1);
// More BLIS routine calls ...

}
// More computations ...
// Final ...

}

Lis ng 24: Example of an applica on that defines a data shared environment where a set of BLIS

rou nes are called.

D5.3 v1.0 68 / 91

The modifica ons in the BLAS library rely on the newly proposed target spread devices construct

(Lis ngs 25). The first step should be to reproduce again the data shared environment using

the aforemen oned target data spread construct. To offload and distribute work among the set

of devices we should add the target spread devices construct, when encountering a for loop. To

make sure that work is computed in parallel by all the devices, we have to setup a set threads

(minimum one per device) and therefore, we have to add the parallel and single constructs (the last

one just to have one thread crea ng the required tasks to complete the assigned computa ons).

void PASTEMAC3(ch,opname,arch,suf)(conj_t conjx,dim_t n,
ctype* restrict x,inc_t incx,ctype* restrict y,
inc_t incy,cntx_t* restrict cntx)

{
// ...
_Pragma("omp target data spread \
map(spread(devices(DEVICESET), range(0:n)), \
to: x[omp_chunk_start:omp_chunk_size]) \
map(spread(devices(DEVICESET), range(0:n)), \
tofrom: y[omp_chunk_start:omp_chunk_size])")
{

if (bli_is_conj(conjx)) {
if (incx == 1 && incy == 1) {

_Pragma("omp parallel")
_pragma("omp single")
_Pragma("omp target spread devices(DEVICESET) nowait")
for (dim_t i = 0; i < n; ++i) {
PASTEMAC(ch,addjs)(x[i], y[i]);

}
}
else {

// ...
}

}
}

}

Lis ng 25: Example of the nature of modifica ons done in the BLIS kernels.

9.2.5. Impact on OpenMP

While flexible, CPUs may not be able to fulfill the performance requirement of specific workloads.

In that sense, we believe that accelerators will become more prevalent. A plausible scenario will

be systems equipped with several accelerators, with similar performance characteris cs, as it

may happen in mul -GPU systems.

In that sense, OpenMP should provide an answer in the form of a convenient mechanism to

exploit those mul -device systems. Our proposal is a first step towards that goal. It has been

presented in mee ngs at the OpenMP commi ee, and while our proposal may not be the one

eventually chosen, we believe it has sparked conversa ons about the forthcoming mul -device

reality of systems.

D5.3 v1.0 69 / 91

10. Conclusions

In this deliverable we have presented the current status of the full MEEP So ware Stack: from the

Opera ng System low-level support, to the higher levels of the applica on layer. The integra on

of all these components aim to allowACME EA programmers to exploit all the system capabili es,

being able to deploy their own use cases, and to obtain useful informa on to infer the performance

behaviour. As described in the Descrip on of Ac on (DoA): ”all the applica on that have been

iden fed are ported to run on top of the emula on pla orm”; and for each applica on’s entry we

have also described the metric of interest and its evalua on methodology (from DoA: ”The final

phase will focus on applica on performance evalua on and debugging”). In short, we are fulfilling

the deliverable’s requirements and, in addi on, repor ng the current state of the whole So ware

Stack.

On the Opera ng System, we have included the support for communica ons on the ACME EA

infrastructure. On the one hand, we have implemented a Linux driver on both the host and

RISC-V sides suppor ng Ethernet communica ons over the FPGA PCIe connector. On the host

side, we have integrated this support on the QDMA driver by using another driver provided by

Xilinx: the Open NIC driver. On the RISC-V side, we have adapted the same Open NIC driver to

work with the shared memory that the pla orm implements.

On the other hand, we have adapted the Ethernet driver developed on the EPI project to the

MEEP infrastructure to work with the FPGA QSFP connectors at 10/100 Gbit, allowing point to

point communica ons with other FPGA boards, or connec vity through a switch.

The compiler infrastructure available on MEEP, based on LLVM, effec vely supports the two

main accelerators of MEEP: the RISC-VVector Extension and the two Systolic Arrays of MEEP.

The vector support leverages previous work done on LLVM in other projects. Thanks to the vector

length agnos c nature of the RISC-VVector Extension allows for exploring scenarios where the

so ware can communicate facts to the hardware. The hardware can choose to change some of

its characteri cs, such as the vector length, as an answer to this informa on. We have explored

prefetch instruc ons to convey memory access informa on to the CPU with mixed results.

The Systolic Array support is a new development that enables interfacing the MEEP Systolic

Arrays via an ISA interface. This ISA interface is built on top of an extension of RISC-V.

The workflow management system provided in the MEEP So ware stack is COMPSs, it provides

a programming model and run me to create parallel and distributed workflows as simple Java

programs and Python Scripts(PyCOMPSs). We have ported the COMPSs run me to run in RISC-V

64-bit architecture, and this modifica ons have been incorporated in the main development

branch and released in the latest COMPSs version 3.0 and 3.1. We have also created RPM

packages and container images to facilitate its installa on and usage.

BLIS is the BLAS library used to provide applica ons the linear algebra func onali es that they

required. This library has been adapted to be used on each MEEP environment: first, we have

added support for execu on of vector instruc ons based on the OpenMP SIMD direc ves and

second we provide a set of configura ons for each of the MEEP compu ng pla orms. Moreover,

we explored the use of this library with a mechanisms, based on OpenMP, to offload all BLIS

computa ons into the available pla orm accelerators. Specifically, we base this approach on

D5.3 v1.0 70 / 91

the target teams distribute for pla orms characterized by a single accelerator and on the newly

proposed target spread construct that can be used to distribute work among a set of accelerators.

We have enabled the run mes of TensorFlow Lite and Apache Spark for RISC-V architectures.

Moreover, Epistasia use-case for Spark can be run inside a singularity container. We have included

both run mes as RPMpackages. We have also enabled benchmarks for four deep neural networks

comprising 99% of the use-cases for deep learning. Finally Epistasia use-case can be offloaded

through numpy and BLIS, as most of the computa onal part is done through numpy.

Regarding container support, we have enabled the usage of most used container engines for the

RISC-V 64bits architectures and included in the MEEP OS distribu on. We have created RPM

packages for Moby, the open source version of Docker, which is the most used container engine,

Podman a trending alterna ve for Docker and Singularity as the most used container engine in

HPC environments.

In Sec on 7.1 we have described the so ware components included in the MEEP so ware

stack that will allow to apply the proposed Performance Analysis Methodology to the different

benchmarks. This list of components includes Extrae, PAPI, and Libunwind. We have created

RPM packages for all of them, as it can be seen in Tables 9 and 10.

The system benchmarks are intended to understand the behaviour of all MEEP environments.

One of the benchmarks is called Stream and is used to benchmark the performance of the memory

architecture. The remaining system benchmarks, EPCC-OpenMP and EPCC-OpenMP/MPI, are

applied to understand the overheads of common HPC run mes such as OpenMP and MPI.

The set of HPC benchmarks range from very simple and common HPC opera ons (RISC-V

benchmarks) and evolve to more complex and representa ve HPC workloads (HPL, HPGC,

FFTXLib, CloudMicrophysics andAdvec on-MPDATA). The goal is to understand the performance

of the applica ons on all MEEP environments by looking at different characteris cs such as vector

instruc on performance, mul -thread and mul -node execu ons.

Actually this goal could be extended to Workflow and Data Analy c benchmarks, although

in these cases we plan to check the performance in a higher level of abstrac on, looking for

scalability tests and general characteriza on of these kind of workloads.

TheMEEPproject also envisioned a systemwithmany accelerators, exposing a gap in theOpenMP

support for more than one device in the context of offloading. We proposed a new extension to

the OpenMP target model with the goal to reduce this gap. This proposal was shared with the

OpenMP commi ee.

10.1. Summary of releases

In this sec on we gather all the informa on about releases spreaded all along this document. In

addi on we also include the specific type of release for each so ware item.

All the releases have been centralized into a unique web site: . Visitors may navigate among

its different sec ons and found the desired so ware component. There are three sec ons

specifically devoted to so ware:

• OS Layer: have the descrip on to install the Opera ng System. It points to the different

D5.3 v1.0 71 / 91

https://release.meep-project.eu

So ware Component IMG RPM SRC Docker

LLVM Compiler (Vector/SA) Yes – Yes riscv64/fedora

LLVM Compiler Mul -device – – Yes

Ethernet driver Yes – –

Moby Yes Yes –

Podman – Yes –

Singularity – Yes –

Java Zero VM 11.x Yes – – riscv64/fedora

Java Server JIT Yes Yes – riscv64/fedora

Python 3.x Yes – – riscv64/fedora

Libunwind Yes Yes –

Table 9: List of fundamental packages

files needed for that process.

• Toolchain: have the list of so ware components that could be installed in the system:

compiler, run mes, and libraries.

• Benchmarks: have the list ofworkloads tested in the project and provided for reproducibility

purposes.

For each entry in the release website, the content will direct the visitor to the corresponding

releases. As described in the Sec on 2.1 they could be any of the following op ons:

• included in the OS image,

• a source code repository,

• an installabe RPM package, or

• included in a docker image.

In certain cases, there will be mul ple of these op ons available. For instance, the Extrae

package could be already included in the Opera ng System default image, but also available

as an independent RPM package, so any update happening in this package could be updated

by running the yum command be er that downloading again the full Opera ng System image.

Tables 9, 10, and 10.1 summarizes the types of releases available for each so ware component.

D5.3 v1.0 72 / 91

So ware Component IMG RPM SRC Docker

COMPSs Yes Yes Yes riscv64/compss

TF Lite Yes Yes Yes riscv64/ lite

Apache Spark – Yes Yes riscv64/spark

MPICH Yes – – riscv64/fedora

BLIS (self-hosted) Yes Yes Yes

BLIS (spread) – – Yes

Extrae Yes Yes –

PAPI Yes Yes –

PAPI LW Yes Yes –

PAPI LW (vhwc) Yes Yes –

Table 10: List of run mes and libraries

So ware Component IMG RPM SRC Docker

Dislib – pip – riscv64/compss

Epistasia (Spark) – Yes – riscv64/spark

TFLite Benchmakrs – Yes – riscv64/ lite

RISC-V Benchmarks – – Yes

HPCG – – Yes

HPL – – Yes

FFTXlib – – Yes

EPCC Benchmarks – – Yes

MPI Benchmarks – – Yes

Stream – – Yes

Table 11: List of benchmarks

D5.3 v1.0 73 / 91

11. List of Acronyms

AI Ar ficial Intelligence

API Applica on Programming Interface

BLAS Basic Linear Algebra Services

BSC Barcelona Supercompu ng Center

CGMT Coarse-Grain Mul threading

CoE Center of Excellence

CPU Central Processing Unit

DA Data Analy cs

DL Deep Learning

DoA Descrip on of Ac on (Annex 1 of the Grant Agreement)

DMA Direct Memory Access

DTB Device Tree Blob

DTS Device Tree Source

Dx.y (MEEP) Deliverable, where x is the WP, and y is the document id within the WP

EA Emulated Accelerator

EPI European Processor Ini a ve

FGMT Fine-Grain Mul -Threading

FPGA Field Programmable Gate Array

GB Gigabyte, 109 bytes

GPU Graphics Processing Unit

GiB Gibibit, 230 bits

HBM High Bandwidth Memory

HPC High Performance Compu ng

HPCG High Performance Conjugate Gradient

HPDA High Performance Data Analy cs

HPL High Performance Linpack

D5.3 v1.0 74 / 91

HSS Hart so ware Services

ISA Instruc on Set Architecture

JIT Just in Time (compilers)

MC Memory Controller

MEEP MareNostrum Experimental Exascale Pla orm

Mnn (MEEP) Project Month, where nn is a numerical value

MSn (MEEP) Project Milestone, where n is a numerical value

ML Machine Learning

NIC Network Interface Card

NVRAM Non-vola le Random Access Memory (e.g., 3D XPoint)

OAI Open Accelerator Infrastructure

OAI-OAM Open Accelerator Infrastructure OCPAccelerator Module

OAM Open Compute Accelerator Module

OCP Open Compute Project

ONIC Open NIC

OOO Out of Order (CPU)

OS Opera ng System

PGAS Par oned Global Address Space

POP2 Performance Op misa on and Produc vity

QDMA Queue Direct Memory Access (Xilinx)

ROM Read-Only Memory

RTL Register Transfer Level (Hardware Descrip on Language)

SA Systolic Array

SBI Supervisor Binary Interface

SCIF Symmetric Communica on Interface

SD Secure Digital (card)

SDK So ware Development Kit

D5.3 v1.0 75 / 91

SIMD Single Instruc on Mul ple Data

SoC System on Chip

TPU Tensor Processing Unit

TCG Tiny Core Generator

UBB Universal Base Board

VOP Vir o Over PCIe

VPU Vector Processing Unit

WP Project Work Package

D5.3 v1.0 76 / 91

12. References

[1] Dimemas. https://tools.bsc.es/dimemas. Accessed: 2022-11-07.

[2] . European processor ini a ve. https://www.european-processor-initiative.eu/.
Accessed: 2021-07-08.

[3] libunwind. https://www.nongnu.org/libunwind/. Accessed: 2022-11-08.

[4] Paraver. https://tools.bsc.es/paraver. Accessed: 2022-11-08.

[5] Pop. https://pop-coe.eu/. Accessed: 2022-11-07.

[6] Quantum espresso. https://www.quantum-espresso.org/. Accessed: 2022-09-20.

[7] Xnnpack. https://github.com/google/XNNPACK. Accessed: 2022-11-11.

[8] A. Pe tet, R. C. Whaley, J. Dongarra, A. Cleary. Hpl - a portable implementa on of the

high-performance linpack benchmark for distributed-memory computers. https://www.
netlib.org/benchmark/hpl/. Accessed: 2021-07-08.

[9] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y.,

Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray,

D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke,

V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wa enberg, M., Wicke, M., Yu, Y., and

Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

So ware available from tensorflow.org.

[10] Adams, D. The hitchhiker’s guide to the galaxy. Greatest Book Ever Wri en (GBEW), Oct.

1979.

[11] Apache So ware Founda on. Apache spark: Unified engine for large-scale data analy cs.

https://spark.apache.org. Accessed: 2022-12-07.

[12] Apache So ware Founda on. Tensorflow for mobile and edge. https://www.tensorflow.
org/lite. Accessed: 2022-12-07.

[13] Ayers, G., Litz, H., Kozyrakis, C., and Ranganathan, P. Classifying memory access pa erns for

prefetching. In Proceedings of theTwenty-Fi h Interna onal Conference onArchitectural Support

for Programming Languages and Opera ng Systems (New York, NY, USA, 2020), ASPLOS ’20,

Associa on for Compu ng Machinery, p. 513–526.

[14] Barcelona Supercompu ng Center. Cluster analysis. https://tools.bsc.es/
cluster-analysis. Accessed: 2021-10-25.

[15] Barcelona Supercompu ng Center. Extrae. https://tools.bsc.es/extrae. Accessed:
2022-11-08.

[16] Barcelona Supercompu ng Center. Folding: Detail performance evolu on. https://tools.
bsc.es/folding. Accessed: 2021-10-25.

D5.3 v1.0 77 / 91

https://tools.bsc.es/dimemas
https://www.european-processor-initiative.eu/
https://www.nongnu.org/libunwind/
https://tools.bsc.es/paraver
https://pop-coe.eu/
https://www.quantum-espresso.org/
https://github.com/google/XNNPACK
https://www.netlib.org/benchmark/hpl/
https://www.netlib.org/benchmark/hpl/
https://spark.apache.org
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://tools.bsc.es/cluster-analysis
https://tools.bsc.es/cluster-analysis
https://tools.bsc.es/extrae
https://tools.bsc.es/folding
https://tools.bsc.es/folding

[17] Barcelona Supercompu ng Center-Centro Nacional de Supercomputación. Risc-v bench-

marks. https://gitlab.bsc.es/benchmarks/risc-v-benchmarks.git/. Accessed:

2022-11-10.

[18] Bull, J. M. Measuring synchronisa on and scheduling overheads in openmp. In Proceedings

of First EuropeanWorkshop on OpenMP (1999), pp. 99–105.

[19] Bull, J. M., Enright, J. P., andAmeer, N. Amicrobenchmark suite formixed-mode openmp/mpi.

In Evolving OpenMP in an Age of Extreme Parallelism (Berlin, Heidelberg, 2009), M. S. Müller,

B. R. de Supinski, and B. M. Chapman, Eds., Springer Berlin Heidelberg, pp. 118–131.

[20] Bull, J. M., and O’Neill, D. A microbenchmark suite for openmp 2.0. SIGARCH Comput. Archit.

News 29, 5 (dec 2001), 41–48.

[21] Field G. Van Zee and Robert A. van de Geijn. Blis repository. https://github.com/flame/
blis. Accessed: 2022-11-07.

[22] Frigo, M., and Johnson, S. G. The design and implementa on of FFTW3. Proceedings of

the IEEE 93, 2 (2005), 216–231. Special issue on “Program Genera on, Op miza on, and

Pla orm Adapta on”.

[23] Gianmarco Mengaldo. Batch 1: Defini on of several weather & climate dwarfs. http://www.
hpc-escape.eu/media-hub/escape-pub/escape-deliverables. Accessed: 2022-08-01.

[24] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recogni on, 2015.

[25] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andree o,

M., and Adam, H. Mobilenets: Efficient convolu onal neural networks for mobile vision

applica ons, 2017.

[26] J. Dongarra, P. Luszczek, M. Heroux, K. Ye. Hpcg benchmark. https://hpcg-benchmark.
org. Accessed: 2022-09-20.

[27] J. M. Bull, F. R., and McDonnell, N. Amicrobenchmark suite for openmp tasks. In Proceedings

of the 8th interna onal conference on OpenMP in a Heterogeneous World (IWOMP ’12) (2012),

pp. 271–274.

[28] John D. McCalpin, Ph.D. Stream: Sustainable memory bandwidth in high performance

computers. https://www.cs.virginia.edu/stream/. Accessed: 2022-06-09.

[29] Lecun, Y., Bo ou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document

recogni on. Proceedings of the IEEE 86, 11 (1998), 2278–2324.

[30] Lordan, F., Tejedor, E., Ejarque, J., Rafanell, R., Alvarez, J., Marozzo, F., Lezzi, D., Sirvent, R.,

Talia, D., and Badia, R. M. ServiceSs: an interoperable programming framework for the

Cloud. Journal of Grid Compu ng 12, 1 (2014), 67–91.

[31] MEEP. Cloudmicrophysics bug report. https://gitlab.
bsc.es/meep/common-dashboard/wp5-software-stack/uploads/
91ed32d1f4a429be23b6f120d5e59e62/cloudmicrophysics-bug-report.pdf. Accessed:
2022-12-27 (confiden al).

D5.3 v1.0 78 / 91

https://gitlab.bsc.es/benchmarks/risc-v-benchmarks.git/
https://github.com/flame/blis
https://github.com/flame/blis
http://www.hpc-escape.eu/media-hub/escape-pub/escape-deliverables
http://www.hpc-escape.eu/media-hub/escape-pub/escape-deliverables
https://hpcg-benchmark.org
https://hpcg-benchmark.org
https://www.cs.virginia.edu/stream/
https://gitlab.bsc.es/meep/common-dashboard/wp5-software-stack/uploads/91ed32d1f4a429be23b6f120d5e59e62/cloudmicrophysics-bug-report.pdf
https://gitlab.bsc.es/meep/common-dashboard/wp5-software-stack/uploads/91ed32d1f4a429be23b6f120d5e59e62/cloudmicrophysics-bug-report.pdf
https://gitlab.bsc.es/meep/common-dashboard/wp5-software-stack/uploads/91ed32d1f4a429be23b6f120d5e59e62/cloudmicrophysics-bug-report.pdf

[32] MEEP Consor um. Deliverable d5.1: Benchmark suite.

[33] MEEP Consor um. Deliverable d5.2: Linux with ini al host interface release, based on the

requirements document.

[34] MEEPConsor um. Deliverable d6.3: Emulated accelerator second releasewith full capability

of inter-accelerator communica on.

[35] NumPy. Numpy. https://numpy.org. Accessed: 2022-12-07.

[36] Simonyan, K., and Zisserman, A. Very deep convolu onal networks for large-scale image

recogni on, 2014.

[37] Terpstra, D., Jagode, H., You, H., and Dongarra, J. Collec ng performance data with papi-c.

In Tools for High Performance Compu ng 2009 (Berlin, Heidelberg, 2010), M. S. Müller, M. M.

Resch, A. Schulz, and W. E. Nagel, Eds., Springer Berlin Heidelberg, pp. 157–173.

[38] Van Zee, F. G., and van de Geijn, R. A. BLIS: A framework for rapidly instan a ng BLAS

func onality. ACM Transac ons on Mathema cal So ware 41, 3 (June 2015), 14:1–14:33.

D5.3 v1.0 79 / 91

https://numpy.org

A. Systolic Array Specifica on

This appending includes the current version of the MEEP Systolic Array specifica on.

D5.3 v1.0 80 / 91

MEEP Systolic Array
Extension

Version 0.6.2

2

2

Table of Contents

1. Introduction
1.1. ISA name

2. MEEP SA Programmer Model
2.1. Systolic Array Identi�cation
2.2. Systolic Registers
2.3. Systolic Speci�c Registers
2.4. Systolic Array Status, sastatus.<n>

3. Systolic Array Instruction Formats
3.1. SACFG formats
3.2. SAOP format
3.3. SAMEM formats

4. Common instructions
4.1. Set operational length
4.2. Set Systolic Speci�c Registers
4.3. Memory accesses
4.4. Generic operation

5. HEVC Imaging Accelerator
5.1. Identi�er
5.2. Operations

6. Neural Network Inference Accelerator
6.1. Identi�er
6.2. Speci�c operations

2

1. Introduction

This is the MEEP Systolic Array Extension (MEEP SA). This is an extension of the RISC-V ISA intended to offer an instruction
level interface to systolic array operation as envisioned in the context of the MEEP project.

This ISA extension depends on the Vector Extension (V) ISA being available.

This extension models the access to the systolic array functionality similarly to that of a coprocessor.

Note The MEEP SA requires at the very least a base RISC-V implementation of RV64IMV.

1.1. ISA name

This extension is named meepsa. Given that it is a nonstandard extension, the ISA speci�cation is Xmeepsa. For instance a
Linux capable 64-bit CPU that implements the V extension 0.7.1 and the MEEP Systolic Array could be named
RV64GC_V0p7_Xmeepsa.

3

2. MEEP SA Programmer Model

The MEEP SA extension provides an instruction-based interface for the 2 systolic arrays considered in the MEEP project.
Each systolic array is assigned an identi�er 0 or 1 which is used to identify the architectural state of each systolic array. This
identi�er is generically noted in this speci�cation using <n> notation.

This extension adds 31 systolic registers per systolic array to the base scalar RISC-V ISA of size SALEN.<n>. The extension
also adds three unprivileged CSRs sastatus.<n>, saoplen.<n>.0, saoplen.<n>.1 of size XLEN bits.

Table 1. New systolic CSRs
Address Privilege Name Description
0x8D0+n URW sasatus.<n> Systolic array status
0x8D2+n URW saoplen.<n>.0 Systolic array operational length 0.
0x8D4+n URW saoplen.<n>.1 Systolic array operational length 1.

The value of saoplen.<n>.<m> is always zero or positive magnitude smaller or equal to SALEN.<n> / 8.

Note Two operational lengths are speci�ed for systolic arrays that operate with bidimensional data.

2.1. Systolic Array Identi�cation

All the instructions in this extension are executed under the context of a speci�c systolic array. There is a systolic array
identi�er of 1 bit called said which is encoded in the instructions.

Note
This extension supports up to 2 systolic arrays at the same time in the same system. A systolic array may not have a use for
saoplen.<n>.1 in which case it is assumed to be hardcoded to value 1. Also in this case sastatus.<n>.illoplen.1 may be set
to 1 if the value con�gured in saoplen.<n>.1 is not 1.

2.2. Systolic Registers

The MEEP SA extension adds 31 architectural systolic registers sa.<n>.0-sa.<n>.30 to the base scalar RISC-V ISA. Their
size is SALEN.<n> bits.

Systolic registers are logically divided in elements of 8-bit size, numbered from 0 to SALEN.<n> / 8.

Note
The assembly syntax does not use the systolic identi�er in the systolic register names because the instruction already establishes the
context. Their names in the assembly syntax are sa0 to sa31.

Note
The registers are only divided in elements of size byte for semantic purposes. An implementation may group the elements and
require saoplen.<n>.<m> be a multiple of that group size.

2.3. Systolic Speci�c Registers

A systolic array may de�ne few systolic-speci�c registers (ssr). Those registers have XLEN size and and are not exposed to
the rest of the architecture.

2.4. Systolic Array Status, sastatus.<n>

This CSR contains the operational state of a speci�c systolic array. This is a read-only register.

This speci�cation de�nes the following bits in this CSR.

4

Table 2. sastatus.<n> register layout
Bits Name Description

63:32 implementation Implementation-de�ned status of the SA
31:4 reserved Reserved for the MEEP-SA spec

4 sastatus.<n>.illoplen.1 The SA cannot operate under the given operational length 1
3 sastatus.<n>.illoplen.0 The SA cannot operate under the given operational length 0
2 sastatus.<n>.busy The SA is operating
1 sastatus.<n>.ready The SA is ready to accept an operation
0 sastatus.<n>.enabled The SA is enabled and can execute operations

Note Some of those �elds may not be needed and will be removed.

sastatus.<n>.enabled establishes that operations for the systolic array <n> can be executed by the instruction. When
this bit is set to zero a systolic array instruction directed to the systolic array <n> will cause an illegal instruction fault.

sastatus.<n>.ready establishes that a systolic array can accept new operation requests. When this bit clear the
execution of a systolic array must behave like a no-operation. A systolic array implementation may choose to always
present this bit as set and stall the execution of an instruction until it can accept it.

sastatus.<n>.busy establishes that a systolic array is operating. This status is purely informational and does not have
functional consequences for the software.

sastatus.<n>.illoplen.<m> establishes that a systolic array was requested an operational length that is not valid.
These bit are modi�ed by the instructions sa.setopleni and sa.setoplen.

Bits 31:4 are reserved for further extensions of MEEP-SA. These bits should be left cleared.

Bits 63:32 are reserved for the implementation. Their allowable values are implementation-de�ned but must include an all-
zeros valid setting.

5

3. Systolic Array Instruction Formats

This speci�cation de�nes the following instruction formats.

Note
This extension uses the major opcode custom-1 as de�ned in the RISC-V Instruction Set Manual. This means that
inst[6:0]=0101011.

3.1. SACFG formats

3.1.1. SACFG.i

0671112141519202425262731

1101010rd111zimm[4:0]sacsr1said00000

custom-1sacfgi

3.1.2. SACFG.r

0671112141519202425262731

1101010rd111rs1sacsr0said00000

custom-1sacfgr

3.2. SAOP format

This is the format for operations that are going to be carried out by the Systolic Array.

067111213141519202425262731

1101010sadst10op[0:1]sasrc1sasrc2ndsaidsasrc3/sadst2

custom-1saop

3.3. SAMEM formats

3.3.1. SAMEM.L format

0671112141519202122252627282931

1101010sadest100rs1esize0000saidopdim000

custom-1destination of loadsamem.loadaddresselement size

3.3.2. SAMEM.S format

0671112141519202122252627282931

1101010sasrc110rs1esize0000saidopdim000

custom-1source of storesamem.storeaddresselement size

6

4. Common instructions

The instruction interface de�nes a set of common instuctions that are available for all the systolic arrays.

A systolic array register operand sa.<n>.<m> is encoded in a 5-bit �eld using the binary encoding of <m>.

Note 0b11111 is not a valid encoding for a systolic array register.

4.1. Set operational length

Instruction sa.setopleni.<n>.<m> rdest, zimm5 is used to set the operational length m of a systolic array.

There is a register form of this instruction sa.setoplen.<n>.<m> rdest, rs1. The value of the operational length <m>
is set from the value in the the register rsrc1.

Both instructions are encoded with the SACFG format. sa.setopleni.<n>.<m> is encoded using the SACFG.i format.
sa.setoplen.<n>.<m> is encoded using the SACFG.r format.

Table 3. sacsr �eld encoding
Register sacsr Notes

0b00000 sastatus.<n>.0 Not a valid operand of sa.setoplen / sa.setopleni.
0b00001 saoplen.<n>.0
0b00010 saoplen.<n>.1
0b0xxxx Reserved encoding.

0b1nnnn Designates ssr identi�ed by
nnnn.

Not mandatory to be a valid operand for sa.setoplen /
sa.setopleni.

4.1.1. Assembly syntax

sa.setopleni.<n>.<m> rd, zimm5
sa.setoplen.<n>.<m> rd, rs1

4.1.2. Semantics

If the systolic array does not support the operational length of the zimm5 operand (or the value in register rs1), then
sastatus.<n>.illoplen.<m> is set to 1 and saoplen.<n>.<m> is set to zero.

Otherwise sastatus.<N>.illoplen.<m> is set to 0 and saoplen.<n>.<m> is set to the XLEN zero-extended value of
zimm5 operand.

The determined value of saoplen.<n>.<m> is returned in register rd.

Note Decide if we want to provide a mechanism in which the SA allows the software to obtain a valid operational length.

4.2. Set Systolic Speci�c Registers

This is encoded using the SACFG format where rdest is x0 and sacsr is a value ranging 0b10000 to 0b11111. Both
SACFG.i and SACFG.r formats can be used. SACFG.i zero extends to XLEN its immediate operand.

4.2.1. Assembly syntax

sa.setssr.<n> <ssr-id>, zimm5
sa.setssr.<n> <ssr-id>, rs1

7

ssr-id is an immediate ranging from 0 to 15 that is encoded in the �eld sacsr as 0b10000 + ssr-id.

4.2.2. Semantics

If ssr-id is not a valid systolic-speci�c register for the systolic array <n> or rdest is not 0b00000 this instruction causes
an illegal instruction.

Otherwise the value designated by the operand in rs1 or the zero extended value to XLEN of zimm5 is set to the systolic-
speci�c register of <n> designated by ssr-id.

4.3. Memory accesses

Instruction sa.load<dim>.<n> is used to load data in memory to the systolic registers. This instruction is encoded using
the SAMEM.L format.

Instruction sa.store<dim>.<n> is used to store data in systolic arrays to memory. This instruction is encoded using the
SAMEM.S format.

4.3.1. Assembly syntax

sa.load1d0.<n>.<esize> sadest, (rs1)
sa.load1d1.<n>.<esize> sadest, (rs1)
sa.load2d0x1.<n>.<esize> sadest, (rs1)
sa.store1d0.<n>.<esize> sasrc, (rs1)
sa.store1d1.<n>.<esize> sasrc, (rs1)
sa.store2d0x1.<n>.<esize> sasrc, (rs1)

4.3.2. Semantics

The amount of data transferred from/to memory is speci�ed by the <opdim> operand.

Table 4. opdim �eld encoding
Assembly opdim[1:0] Data transferred

1d0 0b00 saoplen.<n>.0 elements
1d1 0b01 saoplen.<n>.1 elements

2d0x1 0b10 saoplen.<n>.0 times saoplen.<n>.1
0b11 Reserved encoding. Unused.

sa.load<opdim>.<n>.<esize> transfers opdim times esize consecutive bytes starting from the address at rs1 into
consecutive elements (starting from element numbered 0) of register sadest.

sa.store<opdim>.<n>.<esize> transfers opdim consecutive number of elements of size esize bytes (starting from
element numbered 0) from register sasrc to consecutive memory addresses starting from address at rs1.

Table 5. esize �eld encoding
esize[1:0] Assembly Value (bytes) Description

0b00 e8 1 Elements of 8-bit
0b01 e16 2 Elements of 16-bit
0b10 e32 4 Elements of 32-bit
0b11 e64 8 Elements of 64-bit

Note A systolic array may require rs1 be an aligned memory address depending on the value of esize.

Note Not all the values of esize must be supported by a systolic array.

8

esize value must allow opdim elements be representable in a systolic register otherwise the instruction yields illegal
instruction.

4.4. Generic operation

Instruction sa.op.<n> is used to trigger an operation of the systolic array.

4.4.1. Assembly syntax

sa.op11.<n>.<op> sadst1, sasrc1
sa.op12.<n>.<op> sadst1, sasrc1, sasrc2
sa.op13.<n>.<op> sadst1, sasrc1, sasrc2, sasrc3
sa.op22.<n>.<op> sadst1, sadst2, sasrc1, sasrc2

The two forms exists to accomodate two inputs and two outputs and three inputs and one output operations.

When a systolic array register operand is not present in the instruction, its encoding is 0b11111.

Field nd encodes the numer of destination registers. 0b0 is one destination register and 0b1 encodes two destination
registers.

4.4.2. Semantics

The meaning of the operation <op> is implementation-de�ned by the systolic array <n>. The systolic array expresses the
operation in terms of the values of the different source operand registers and the values of saoplen.<n>.<m>.

Note Systolic-speci�c registers can participate as input operands of the operation.

9

5. HEVC Imaging Accelerator

5.1. Identi�er

The systolic array identi�er for the HEVC Imaging Accelerator is 0.

5.2. Operations

op[1:0] Description
0b00 Computes something
0b01 Computes something else

10

6. Neural Network Inference Accelerator

6.1. Identi�er

The systolic array identi�er for the Neural Network Inference Accelerator is 1.

6.2. Speci�c operations

op[1:0] Assembly Description
0b00 sa.op.1.noact sadst1, sasrc1, sarc2, sasrc3 No activation function.
0b01 sa.op.1.crelu sadst1, sasrc1, sarc2, sasrc3 Activation function is ReLU.
0b10 sa.op.1.htanh sadst1, sasrc1, sarc2, sasrc3 Activation function is hyperbolic tangent.

11

	Executive Summary
	Operating System
	Compiler support
	Runtimes and libraries
	Containerization support
	Benchmark descriptions
	Offload mode and multi-devices
	Software distribution: releases

	Introduction
	Type of releases
	Execution modes

	Operating System
	Driver for Ethernet over PCIe
	Integrating the ONIC driver on QDMA
	Developing the RISC-V driver counterpart

	Driver for 10Gbit Ethernet over QSFP
	Driver for 100Gbit Ethernet over QSFP

	Compiler support
	Infrastructure
	RISC-V Vector Extension optimisations
	Prefetching
	Loop transformations for temporal locality

	Systolic Array
	Multi-devices support

	Runtimes and Libraries
	Message Passing Interface
	OpenMP runtime
	COMPSs runtime
	TensorFlow Lite framework
	Spark framework
	BLIS library
	Numpy

	Container support
	Enabling container support on ACME-EA
	Working with distributed applications
	Container releases

	Performance Analysis Methodology
	Profiling support
	Extrae
	libunwind
	Enabling hardware counters

	POP Methodology
	Vector methodology
	Validation with sample codes

	Benchmarks description
	System benchmarks
	Stream
	EPCC-OpenMP
	EPCC-OpenMP/MPI

	HPC benchmarks
	RISC-V Benchmarks
	HPL
	HPCG
	FFTXlib
	CloudMicrophysics
	Advection-MPDATA

	Data Analytics benchmarks
	TensorFlow Lite models
	Spark Epistasis use case

	Workflows benchmarks
	Dislib Algorithms
	Hyper-Dimensional Computing (HDC)

	Systolic Array benchmarks

	The MEEP Offload Mode
	Single-device support
	Compiler support for MEEP offload
	Runtime support for MEEP offload
	RISC-V side offload support
	Testing
	BLIS single-device approach

	Multi-device support
	OpenMP extensions
	Compiler support for multi-devices
	Middle-ware extensions
	BLIS multi-device approach
	Impact on OpenMP

	Conclusions
	Summary of releases

	List of Acronyms
	References
	Systolic Array Specification

