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1. Executive Summary 

This document is part of a collection that describes the MareNostrum Experimental Exascale 
Platform (MEEP) Project. This project is organized into six work packages (WP1 to WP6). Of 
these, WP4, 5, and 6 cover technical content. Figure 1 shows the relationship between these 
technical WPs. 

 

Figure 1. Layered structure of the MEEP project based on its work packages (WP4, WP5 and 
WP6) 

● WP4 describes the Accelerated Compute and Memory Engine (ACME) accelerator 
architecture and its related RTL, verification, and performance modeling simulations. 

● WP5 covers software, affecting all the layers of the software stack. 

● WP6 is where the other WPs come together, by running SW applications in a miniaturized 
version of the ACME architecture on the emulation platform.  

As a whole, all these WPs together are focused on the development of a set of tools that 
enable the exploitation of the MEEP FPGA-based emulation platform as a hardware/software 
co-design laboratory. 

In contrast to the information presented in previous deliverables, D6.1 Platform definition 
and acquisition and D6.2 Emulated accelerator initial release (M18), the scope of this 
deliverable D6.3 is going deeper into the communication capabilities, by extending the ones 
presented in previous deliverables, between emulated accelerators implemented on the 
FPGA.  

D6.3 Emulated accelerator second release with full capability of inter-accelerator 
communication (M30).  After the first release delivery of the MEEP FPGA Shell, this document 
presents a more advanced version of it, which provides communication capabilities for any 
emulated accelerator targeted in this project, but also beyond MEEP. As it is shown in Figure 
2, one of the main advantages of using the MEEP FPGA Shell is the fact that it provides a 
flexible, scalable, and customizable wrapper for any kind of accelerator or system targeting 
the FPGAs.  

All the achievements reported in this deliverable have been tested with different 
configurations of the ACME accelerator, including the second FPGA release of that 
accelerator (a many-core system).  
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In addition, the evolution of the continuous integration and continuous development (CICD) 
infrastructure, able to target the different FPGA designs under development, is presented. 

 

Figure 2. Layered structure of the MEEP FPGA Shell used as a communication wrapper for any 
targeted emulated accelerator 

Three of the main elements of the FPGA Shell included in Figure 2 were explained in the 
deliverable D6.3: PCIe1, HBM2, and local FPGA-to-FPGA3 (F2F Ctrl & F2F Link). As a 
consequence, only the remote FPGA-to-FPGA (Ethernet Ctrl & Remote F2F Ctrl)) will be 
mentioned in this document. Indeed, this deliverable explains the two main communication 
mechanisms developed for using Ethernet: 1) Ethernet over PCIe and 2) Ethernet over QSFP.  

2. Introduction 

This report complements the information provided in previous deliverables D6.1 Emulation 
Platform specification (M6) and D6.2 Emulated accelerator initial release (M18). On one hand, 
these previous documents presented and described the MEEP FPGA-Shell. A tool mainly 
focused on a project generation and implementation, in a reliable, reproducible, extensible, 
and automated way targeting different Alveo Boards. It moreover provides seamless and 
flexible communication capabilities to any design with the host, as part of the MEEP platform.  
On the other hand, this deliverable exploits the MEEP FPGA-Shell framework features, to 
enable the FPGA to FPGA communication through ethernet, using different mechanisms. 

The FPGA Shell  has been conceived as a wrapper for any design that wants to be emulated 
on an FPGA, initially targeting Alveo U280 and U55C but not limited to them. As it is shown 
in Figure 3 (left diagram), the FPGA Shell becomes a top module project (FPGA_Shell Project). 
From the hardware point of view, the final design project is composed of two main 
submodules: 1) the Shell IPs, which are all the communication IPs (i.e. Ethernet, Aurora, PCIe, 
etc. ), and 2) the Emulated Accelerator (EA), which includes the custom accelerator design to 
be implemented in the FPGA.  In addition, from the software perspective, the final design 
project also includes software drivers as a layer in between the hardware and the operating 
system.  

Figure 3 (right diagram) details the hard macros included in the U280/U55C FPGA: The PCIe 
macro, two QSFP ports for enabling Ethernet and FPGA to FPGA communication, two stacks 

 
1 PCIe: Deliverable D6.2, Section 4.1 
2 HBM: Deliverable D6.2, Section 4.2 
3 FPGA to FPGA communication: Deliverable D6.2, Section 4.3 
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of HBM memory with 8 channels per stack, and only for the U280, two blocks of DDR4 
memory.  

 

Figure 3: The MEEP-FPGA Shell project 

The rest of this document is structured in the following sections:  

● Section 3: Ethernet communication. The scope of this section is focused on the 
different Ethernet solutions for the Alveo boards focusing, but not exclusively, on 
RISC-V embedded designs. There are two fundamental implementations for Ethernet:  

○ The first one establishes an Ethernet connection between a host machine 
(that holds the Alveo board via PCIe) and an FPGA-Embedded RISC-V with a 
Linux operating system.  

○ The second one is a more flexible Ethernet solution, which connects the 
FPGA-Embedded RISC-V with any other end-point via QSFP connection. 

● Section 4: ACME Emulated Accelerator highlights the main differences between the 
first and the second release of the accelerator implemented on the FPGA. This latest 
release has been used for testing the communication capabilities of the FPGA Shell. 

● Section 5: Continuous Integration and Continuous Development process for the 
FPGA flow. This section describes the development of a Continuous Integration 
Continuous Deployment (CICD) process that automates the whole FPGA flow for any 
design project that targets FPGAs used in the MEEP project. 

● Section 6: MEEP contributions to other projects  from the FPGA perspective. Finally, 
this section describes how the results of the FPGA efforts, in the context of the MEEP 
project, have been shared with other projects. WIth this, we demonstrate the long-
term vision of the MEEP infrastructure, in terms of FPGA-based emulation platform, 
and its associated tool kit. 

3. Ethernet Development 

There are two main approaches for the Ethernet development:  

1) Ethernet over PCIe, which enables an Ethernet based communication between the host 
and the FPGA board via PCIe, and  

2) Ethernet over QSFP, which enables the communications between the FPGA-embedded OS 
and any other Ethernet system via QSFP.  
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As MEEP infrastructure targets up to 12 nodes, with 8 FPGA boards each, these two solutions 
combined provide full Ethernet connectivity on the system depicted in Figure 4. 

 

Figure 4: The MEEP nodes. 12 host with 8 FPGA boards connected via PCIe to each of them 

Ethernet via PCIe provides full connectivity to all the 8 FPGA boards connected within the 
same node, whereas Ethernet via QSFP provides connectivity between FPGAs in different (or 
same) nodes. Full connectivity is also guaranteed using 100 Gb Ethernet switches that are not 
shown in the diagram for simplicity. In addition to this, the FPGA Shell provides an 
homogeneous and scalable communication infrastructure for all the FPGAs, independently 
from the EA architecture they are instantiating (represented on the right side of Figure 4).  

3.1 Ethernet over PCIe 

Configuring Ethernet over PCIe enables the communication between the host to any of the 
PCIe-connected FPGAs in the cluster. Figure 5 shows the configuration of a node within the 
MEEP large-scale FPGA-based machine.  

 

Figure 5: Large-scale MEEP infrastructure node with 8 U55C FPGAs  

The solution consist of two main components, as it is depicted in Figure 6: 

1) The host driver (QDMA+ONIC driver kernel-level): The final version of the driver has 
been developed within the MEEP project. It extends the QDMA driver provided by 
Xilinx [X.QDMA], also using the Xilinx ONIC project as reference [X.ONIC]. The 
QDMA driver creates an additional interface to the default QDMA/PCIe driver, 
especially dedicated for the ethernet communication. The modified QDMA driver 
(ONIC driver, from now on) sets up a Linux netdev device  (the equivalent to an 
ethernet interface), and creates two queues to handle both the regular QDMA to 
memory transactions and the ethernet based transactions. 

2) The embedded RISC-V driver (MEEP-ETH device driver kernel-level): The FPGA 
implementation consists of an embedded RISC-V processor with a Shared memory 
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space (Data-xchg area) for enabling the interchange of messages between the host 
(Host side) and the design implemented on the FPGA (RISC-V side).   

 

Figure 6: Shared memory diagram. The PCIe host and the embedded RISC-V processor use an 
exchange memory area for Ethernet packets  

On one hand, the ONIC driver sets properties for the netdev device that implies direct 
connection between, at least two points, being the host one of them:  

● Point-to-point communication: This is the basic communication property, since it 
establishes a direct communication mechanism between two devices.  

● No-arp communication: In an environment where there is only a point-to-point 
connection, there is no need to resolve the MAC addresses, so the ARP protocol is 
disabled. 

● Multicast communication: This property allows sending the same message across 
multiple devices at the same time.  

The ONIC drivers are stored in the corresponding repository4. 

On the other hand, the embedded RISC-V Linux driver is included as part of an SDK 
repository5. This repo contains, not only this driver, but also other elements to complete a 
solution for design, develop and debug on an FPGA running Linux on a RISC-V core. Thus, 
this repository has the necessary submodules to build a binary that boots Linux: 

1. Open SBI 
2. Linux Kernel (Xilinx), including a set of drivers in which the modified version of ONIC 

for enabling the Ethernet is one of them. 
3. Buildroot 

In addition to the three submodules, the repository includes: 1) the embedded Ethernet-Over-
PCie drivers (RISC-V side), 2) the Ethernet-over-QSFP drivers, and 3) an automatic mechanism 
based in GNU Make to generate different Linux configurations, depending on the features of 
the targeted RISC-V processor (i.e. Ariane, Lagarto Hun). 

 
4 https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/xilinx_pcie_drivers 
5 https://gitlab.bsc.es/meep/meep-os/lagarto-openpiton-sdk/-/pipelines 
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Figure 7: A point-to-point communication, using Ethernet connection over PCIe, between the 
host side  (left side of the figure) and the RISC-V side on the FPGA (right side of the figure) 

The Ethernet over PCIe mechanism has been tested and validated by running several tests 
that enables point-to-point communication between a host and a RISC-V design implemented 
on the FPGA. An example of these experiments is shown in Figure 7. Moreover, the 
experiments have been validated for the two FPGAs used in the MEEP project, Alveo U280 
and U55C. 

 

Figure 8: iperf3 measured bandwidth for Ethernet over PCIe for communication between the 
FPGA and the local host. 

Regarding the performance of this solution, as depicted in Figure 8, when using iperf3 tool 
[IPERF3] the maximum measured bandwidth shows a value of 1.05Mb/s on average. 

Our current solution focuses on correctness over performance. Future solutions will include 
performance enhancements which are still under development. From the HW point of view, 
we can enable interrupts to make the process more efficient.  

3.2 Ethernet over QSFP 

The Ethernet over QSFP solution refers to Ethernet links between FPGAs embedded RISC-V 
systems through the QSFP physical connectors. Unlike the Ethernet over PCIe solution, which 
involves development on the host side, this one only involves development on the FPGA side.  

The Ethernet QSFP design uses the following pieces: 

1) Xilinx’s DMA based solution, with Scatter-Gather mode enabled. Although this 
Scatter-Gather mode is not required, it boosts performance when used. It creates a 
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queue of packet fragments that the DMA can manage itself without issuing interrupts, 
without CPU intervention, until the descriptor queue is finished. 

2) A RISC-V system capable of mapping cacheable and non-cacheable regions. 
3) A proper device-tree configuration, to map the different interfaces for allowing the 

operating system, Linux in our case, to interface with them. 

Cache coherency is a challenge in combination with DMA-based solutions [DMA]. RISC-V ISA 
does not include the definition of flush or invalidate instructions. This implies relying on the 
cache hierarchy of the system to provide a mechanism to deal with those two situations.  

A potential side effect of using DMA, when dealing with processors with data cache, is the 
possibility of data corruption problems because data in cache is no longer coherent with 
respect to the main memory. The problem occurs when a DMA transfer changes the contents 
of main memory that has been cached by the processor. The data stored in the cache will be 
the previous value. Being more precise, the problem happens when a DMA transfer changes 
the content of main memory addresses, which have been previously cached by the processor.  
However, when the cache is flushed the stale data will be written back to the main memory 
overwriting the new data stored by the DMA. The end result is that the data in main memory 
is not correct. A similar problem is faced when main memory starts transferring data to the 
DMA, and in parallel, the processor updates data in cache. In that case, there would be a data 
mismatch between cached data and main memory until a cache flush is executed. In this 
context, the data transferred from main memory to the DMA will be stale data instead of data 
updated by the processor. As with any memory corruption problem, these situations are 
notoriously difficult to track down because the behavior of the system may be unpredictable. 

In order to avoid this cache coherence problem several techniques have been implemented 
in practice in different hardware system designs. One of them is to include bus snooping or 
cache snooping mechanisms as part of the system. The snooping hardware notices when an 
external DMA transfer refers to main memory using an address that matches data in the 
cache, and either flushes/invalidates the cache entry, or “redirects” the transfer so that the 
DMA transfers the correct data, and the state of the cache entry is updated accordingly. In 
systems with snooping, DMA drivers don’t have to worry about cache coherency. 

Another solution is more software oriented, by modifying the device driver to: 1) explicitly 
flush or invalidate the data cache before a transfer is initiated, depending on the address 
involved in the transaction; or 2) make  data buffers available to bus mastering peripherals. 
This approach complicates the software and causes more transfers between cache and main 
memory; however, it does allow the application to use any arbitrary region of cached memory 
as a data buffer. 

A third solution, and the approach we have implemented, is a combination of the above 
solutions. The driver explicitly issues flush commands to the hardware, which can interpret 
those commands to effectively flush the cache. OpenPiton [OP], which is the SoC framework 
we are using for our EA system, allows this approach because it has an internal flushing 
mechanism. 

Summarizing, we have studied three possibilities: 
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1. The Kernel driver copies data from cached memory to uncached memory (DMA pool) 
and updates the DMA registers accordingly. This adds extra copies and likely wastes 
most of the DMA performance. 

2. Flushing with OpenPiton. As RISC-V does not have any specific instruction for 
flushing the caches. Then, we have studied how to achieve this with OpenPiton itself, 
that documented several non-tested mechanisms to accomplish this [FLUSH]:  

3. Add DMA coherency to OpenPiton: The DMA IP could eventually generate 
eviction/flushes in the OpenPiton cache hierarchy depending on the address the 
driver writes in the DMA registers, or similarly, depending on the AXI 
AWADDR/ARADDR where the S2MM (Stream to Memory Map) or MM2S (Memory 
Map to Stream) interfaces want to access. 

The first solution is the easiest one but inefficient. The second solution is affordable, and it 
was what we finally implemented. The third solution would be the best from the performance 
point of view, adding extra features to OpenPiton that would be welcomed by the community. 
This is a significant amount of work and left to future (community) work. 

The ACME_EA needs to define a shared memory space between the DMA engine and the 
CPU. Linux will use it as a memory pool to store the buffer descriptors, but it does not store 
the Ethernet packets. These descriptors will be used by the Statter-Gather engine in the Xilinx 
DMA IP to generate the necessary transfers and the consequent interrupts. 

The DMA pool needs to be placed in a non-cacheable region in the system to avoid coherency 
issues at the buffer descriptor level. Still, Linux internally manages the Ethernet packet in the 
main memory, and coherency issues will eventually appear when processing them. 

Finally, as mentioned above, we have implemented a flush mechanism shared both at the 
software driver and hardware level. The driver does specific writes to the cache hierarchy 
system, which has registers to perform flushes based on either cache lines or physical 
addresses. We have seen how the flush mechanism is unavoidable for making the Ethernet 
point-to-point communication works without errors. A successful test of this mechanism is 
shown in Figure 9. This image represents a ping command between two different U55C 
FPGAs. 

 

Figure 9: Ping between two embedded FPGA (U55C) -RISC-V machines 
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3.2.1 10Gb Ethernet solution 

The 10GbE solution is an Ethernet solution based on two main components: 

1) Xilinx DMA [X.DMA]. 
2) An open-source 10GbE IP from Aleix Forencich [10GAF].  

 

Figure 10: Utilization report highlighting the 10GbE module 

The resource utilization report for this solution is shown in Figure 10. As it might be seen, the 
main source of resource consumption is the Xilinx DMA, which uses around 4K LUTs, whereas 
the 10GbE IP uses around 2K LUTs, which can be considered a low amount of LUTs. 

 

Figure 11: iperf3 measured bandwidth for the 10 GbE IP for FPGA to FPGA communication. 

To test the bandwidth, the iperf3 tool has been used, and according to the data shown in 
Figure 11, the measured bandwidth reflects 2.70Mb/s. Again, the focus is on correctness and 
not performance. There are several performance improvements that can be made in the 
future to increase the bitrate. 

3.2.2 100Gb Ethernet solution 

The 100GbE solution is an Ethernet solution based on two main components: 

1. Xilinx DMA  
2. Xilinx CMAC 100GbE IP [X.CMAC]. This IP is a hard macro in the Alveo U280 and 

U55C FPGAs.  

The resource utilization, depicted in Figure 12, shows that Xilinx DMA consumes rather more 
resources for 100Gb IP (20K LUTs vs 4K LUTs). As expected, to support 100Gb data rates, 
the DMA engine needs to be more productive, providing concurrent transmission of transmit 
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(Tx) and receive (Rx) data with no stalls from/to AXI-MM to/from AXI-Stream channels 
through 512-bit bus width at 322MHz. 

 

Figure 12: Utilization report highlighting the 100GbE module 

The performance results obtained for the 100Gb solution under Linux are measured by using 
the diagnostic utility iperf3. This tool directly accesses the IP by using the Ethernet driver. At 
this point in time the driver is focused on correctness instead of performance: 

- Diagnostic utility on non-cached HBM-based DMA pool: ~ 10 Gb/s 
- Diagnostic utility on cached HBM-based DMA pool: ~ 415 Mb/s 
- Linux iperf3 utility on non-cached HBM-based DMA pool: ~1 Mb/s 

3.2.3 100Gb Ethernet via Switch 

We tested the 100GbE via a switch by using the E4 [E4IF] infrastructure setup, as a sandbox 
for validating the communication mechanism. 

The 100GbE solution has been successfully tested using two u55c boards connected in the 
same host via PCIe, where their QSFP connectors  were both connected to a 100Gb Switch 
(Figure 13). This test was performed with a bare metal application running without Linux, thus 
validating our HW implementation. 

 

Figure 13: TCP/IP communication between  two U55C Alveo boards using a 100GbE switch 
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4. ACME Emulated Accelerator (ACME_EA)  

The ACME emulated accelerator presented in this section is an FPGA implementation of the 
RTL system, developed in the technical WP4. It is a many-core system with the capability of 
running many scalar cores and vector accelerators with the capability of being fully 
communicated with other accelerator modules.  

The interconnection network between the cores (scalar core+vector accelerator) is based on 
the OpenPiton framework, and the computation core as part of the Tile is an evolution of the 
first FPGA release of the accelerator (DVINO). The high-level view of the ACME architecture, 
when it is configured in a 2x2 topology, is depicted in Figure 14. 

 

Figure 14: Emulated Accelerator prototype. Consist of 4 DVINO tiles, each composed by 1 RISC-
V core (Lagarto) with a VPU with two lanes 

More in detail, the scalar core used in DVINO is Lagarto Hun; a RISC-V core developed in BSC 
and evolved in MEEP. The scalar core instantiates the MEEP.VPU v2.2.1, which uses the OVI 
as the communication interface, and is configured by default with 2-Lanes configuration. This 
yields a total of 4 RISC-V cores with their corresponding VPU each, and a total of 8 vector 
Lanes in the system. The resource usage for this configuration is presented in Figure 15. In 
terms of Look-Up Tables (LUT), the critical resource in our designs, this EA design uses 
733,476 LUTs, 56% of the total. The most demanding module is by far the VPU, which uses 
approximately 50KLUTs per lane. 
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Figure 15. Vivado resource utilization window for a 2x2 manycore configuration. Each tile has a 
DVINO with 2 Lanes per VPU 

This accelerator interfaces with the FPGA Shell devices through the defined I/O space of the 
system, implemented with a crossbar that addresses the requests of the RISC-V system to the 
corresponding Shell device. This is the case of the presented Ethernet implementations, the 
UART, and the HBM. Figure 16 represents the relationship between the Emulated Accelerator 
and the MEEP FPGA Shell. 

 

Figure 16. FPGA Shell containing a basic EA configuration within. 
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When the EA is clocked to 100MHz, scaling up the number of Tiles in the system eventually 
creates timing issues, as the tool faces congestion issues. Relaxing timing constraints (i.e, 
50MHz) increases the possibilities of spreading the logic to further zones of the FPGA, thus 
making a 4x4 configuration feasible and generally maximizing the use of the FPGA resources.  

4.1 Second FPGA release of the ACME_EA accelerator  

The results shown in previous sections on the FPGA have been obtained using the more 
advanced version of the ACME_EA accelerator, which includes advanced features with 
respect to the first release presented in the deliverable D6.2, Section 3. Table 1 collects the 
main information for comparing the evolution of the ACME accelerator from the first to the 
second release. 

Table 1. Characterization of the first and second FPGA release of the ACME_EA accelerator  

Description ACME_EA FPGA 1st release ACME_EA FPGA 2nd release 

M18 M36 

Architecture: computation single core many-core 

Arch: communication Bus 
NoC  

(Routers support:  
OpenPiton and ProNoC routers) 

core 

ACME VAS Tile 
core 

scalar core + VPU scalar core + VPU 

scalar core 
RV64IMA (5 stages) 

In-order 
RV64GC (6 stages) 

In-order 

VPU 
MEEP.VPU v1.0 
(See Appendix I) 

MEEP.VPU v2.2.1 
(See Appendix I) 

vector support yes yes 

Configurable L2 size yes yes 

Scalable number of Tiles no yes (2x2* 2D-mesh)  

Language SystemVerilog and Chisel SystemVerilog 

Linux OS support yes (buildroot) yes (Fedora) 

Host/Device communication  PCIe PCIe, Ethernet over PCIe 

MEEP FPGA Shell support yes yes 

Memory Controllers (MCs) N/A support for multiple MCs 
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Clock frequency 50 MHz 50MHz and 100MHz* 

M36 is the evolution of M18, and it is under development by the RTL team. 
*100MHz is only possible when the many-core system only includes the scalar core in each of the Tiles. 
Running the system at 50MHz allows the manycore system to close timing with a 4x4 configuration, when the 
tile includes only the scalar core. 

 

4.1.1 FPGA system release 

The Emulated Accelerator releases are available in the MEEP Gitlab repository:  

https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/fpga_shell/-/wikis/MEEP-
FPGA-Releases 

The site above describes the main features of the different releases, a link to the source code and 
the link for the bitstreams.  
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5. Continuous Integration and Continuous Delivery for 
the FPGA flow 

Continuous integration and Continuous Delivery (CICD) is a common practice in the 
development of software projects. It is quite hard to imagine a project that does not consider 
its use as part of the delivery flow. Despite the different nature of software and hardware 
projects, there is no reason why not to use CICD in the latter. Going further, it is perfectly 
possible to apply the same concept to an FPGA environment, where the use of CICD flows is 
even less common and mature.  

The MEEP project has prioritized a CICD system that robustly supports the whole FPGA flow 
for any hardware system design, by adding repeatability, reliability, flexibility, and scalability 
properties to the delivery process. 

The MEEP CICD flow creates the final software release (binaries) and hardware releases 
(bitstreams) starting from scratch: The process consists of cloning the sources in a clean space 
and then automating the necessary steps to build the final binary (or binaries). This automation 
is run by a set of scripts, a runner(s) that executes them, and a server that orchestrates the 
process in combination with the other two.  

The main difference in the FPGA environment with respect to a pure software one is the 
nature of the sources (RTL code), and likely some script-level software that carries on the 
building of the FPGA system. In MEEP, mainly TCL scripts are used to execute the vendor 
specific tasks (Xilinx/AMD), python, and bash scripting. This combination eases the scalability 
and reproducibility of the different projects. That enables the possibility of building the same 
project with a different set of parameters that yield a completely different system, always 
from scratch.  

It would be perfectly correct, and useful, to stop the CICD execution after successfully 
synthesizing some RTL code. However, the FPGA flow proposed in MEEP extends this 
approach to complete all the steps, including the effective implementation of a design on the 
FPGA; which means the place and route, and the bitstream generation. Even further, the 
infrastructure supports targeting different FPGA boards (Alveo U280, Alveo U55C, Alveo 
U200, and VCU128), programming them and running different benchmarks to validate the 
implemented designs, or even check improvements with respect to previous designs, in terms 
of performance, utilization, etc.  

From the project perspective, this whole ecosystem is not only one repository with all the 
pieces, but a cross-project system, which involves RTL development, FPGA development, and 
SW development. This interconnection between different projects obliges: 1) to set some 
policies that define the boundaries among them, and 2) configure events that trigger the 
different pipelines on the different repositories. 

In order to detail the MEEP FPGA flow, it is important to take in consideration that the MEEP 
project is designing and developing the ACME accelerator. As a proof of concept, and to test 
the whole infrastructure, the scaled down version of ACME is based on: 1) a computation 
engine, where the core is the VAS Tile core module, 2) a memory engine, which is a module 
close to memory, and 3) the communication infrastructure based on the OpenPiton 
framework. More information about the design in the deliverable D4.2 FPGA RTL revision 1 
release. Complete verification environment. 
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Moreover, another piece to implement any design in the MEEP infrastructure is the FPGA-
Shell, which wraps any hardware design and provides communication capabilities with the 
host and other FPGAs.  

All the steps involved in the MEEP FPGA flow are shown in Figure 17.  

 

Figure 17: multi project CICD high level diagram 

As stated, ACME_EA is a flexible project that allows different manycore configurations, 
interfaces, and features. For instance, it allows selecting which RISC-V Core to implement in 
the system, how many of them and the system topology in the manycore architecture. The 
RISC-V CPU is integrated in the ACME_EA file system as a git submodule. The regular CICD 
flow works on top of one repository, so in a multi-project, multi-repository context, we need 
to implement a mechanism to communicate the different repository pipelines between them. 
This mechanism is the “trigger” feature. Some jobs in a pipeline can have the goal to be the 
triggering source of a downstream pipeline. As depicted in the Figure 17 (step 1), when 
changes in the RISC-V submodule are committed to a specific branch, this triggers the 
ACME_EA main repository pipeline. In this structure, ACME_EA is the parent repository, since 
it is the one containing the submodule. 

When triggered, the ACME_EA repository contains an outdated SHA hash for the submodule. 
One of the jobs in the pipeline is to update the submodule to be the one that triggered the 
ACME_EA pipeline. To achieve this, the submodule pipeline passes the SHA of the commit as 
a variable for the ACME_EA pipeline. This way, the ACME_EA pipeline can update the 
submodule and do the necessary steps to complete the building flow. As a final job, if the 
ACME_EA pipeline succeeds, the job commits the ACME_EA repository with the updated 
submodule, creating a new release version.  

Simulating the design and doing the FPGA synthesis of it are the main jobs in the ACME_EA 
pipeline, which overall verifies that the RTL is FPGA compliant. Thus, in case the RTL is 
inferring latches or creating timing loops, a job in the pipeline detects them and makes the 
pipeline fail. The detail of the whole ACME_EA flow is depicted in Figure 18, where all the 
different CICD steps are included:  

● simulation:   Simulates ACME_EA with the updated VAS tile core. This job is calling 
git to get the VAS commit SHA that has been passed by the parent pipeline. 

● synthesis: FPGA synthesis of the design to know if it is compliant with the FPGA 
requirements.  
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● validation: This step checks whether there are RTL errors, critical warnings or failures 
on the synthesized design.  

● deploy-openpiton: Stores the generated artifacts in the servers, making them 
available for later study (routing, timing, etc). A second job in the same stage pushes 
to the ACME_EA repo with the updated and successfully verified VAS submodule, 
creating new commit SHA that will be passed down to the FPGA Shell pipeline 

● push-shell: This is the step that triggers the CICD associated with the FPGA-Shell 
repository. It takes the new SHA created in the parent pipeline. 

 

Figure 18: ACME_EApipeline 

As it is shown in Figures 18 and 19, the process creates new triggers (fpga-shell-trigger in 
Figure 18, and OpenPiton to FPGA Shell in Figure 19). This time, along the updated and 
successful ACME_EA repository, the trigger acts on the FPGA Shell project, which gets the 
newly (and automatically) generated commit SHA for the ACME_EA. From the FPGA Shell 
perspective, ACME_EA is an IP, which is dropped inside a set of interfaces, mainly PCIe and 
HBM (see Figure 3). This new FPGA pipeline has a configuration of jobs that goes through the 
project creation to the bitstream generation.  

 

Figure 19: Multi Project CICD trigger chain 

Typical FPGA flow steps are themselves jobs in the pipeline, namely synthesis and place and 
route. The synthesis in this case comprehends all the interfaces that the release configuration 
may need (Ethernet, Aurora, etc.), differentiating this synthesis from the synthesis carried on 
in the ACME_EA pipeline in the number of involved elements. In the ACME_EA pipeline, there 
is no need to add the whole set of interfaces, as the main goal is to verify the RTL developed 
in the submodules, and in ACME_EA itself.  

The last two jobs in the FPGA Shell pipeline are: 1) programming the FPGA, and 2) testing the 
final design. For this final step, different benchmarks might be executed, and in the end the 
output is read. If the read output matches the expected output, the pipeline passes. An 
example of this is booting Linux on the FPGA. If Linux boots, there are different messages 
during the booting that demonstrate that the FPGA design is operational and a successful 
build.  

Lastly, the deploy stage takes place (Figure 20). Here, the pipeline stores the different artifacts 
created by the runners on the workstations. This is useful to check the main aspects of the 
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design, getting the FPGA reports offline, or for comparing the details between different 
implementations. When this process runs on the FPGA Shell master branch, an extra job 
uploads the bitstreams to the MEEP official release site.  

 

Figure 20: FPGA Shell pipeline 

6. MEEP Contributions to other projects from the FPGA 
perspective 

The design efforts that we have described in previous sections are exploited in other projects. 
Such is the case of DRAC [DRAC], eProcessor [EPROC] and EPI [EPI]. The MEEP Shell project 
is now open-source and available on GitHub [MEEP.GH]. In addition, some students from the 
University of Santa Barbara have used it for internal purposes in combination with OpenPiton. 

1) eProcessor is using part of the CICD code developed for MEEP to implement its CICD 
flow. The whole FPGA project can be generated using the MEEP FPGA Shell flow. 

2) EPI is using the 10Gb Ethernet solution, and we also ported the design from the 
VC128 board to the Alveo U280 and U55C boards. 

3) DRAC is also using the 10Gb Ethernet solution in combination with the MEEP FPGA-
Shell approach. 

On the other hand, MEEP development have been supported by other projects:  

1) EPI: Leveraging the Linux Ethernet driver they implemented, as a reference to insert 
our modifications. 

2) OpenPiton:  Establishing technical discussions with the main maintainer of the project 
for clarifying some low-level details of the project. 

7. Conclusion 

With the work described in this deliverable two kinds of Ethernet communications have been 
enabled for the MEEP project: 1) Ethernet over PCIe, and 2) Ethernet over QSFP. This opens 
a broad set of possibilities, not only for MEEP but for all the different projects that wish to 
target a Xilinx Alveo board. In addition, the CICD flow is released as part of the MEEP FPGA 
Shell, again, enabling this flow for any project based on it. 

The Ethernet solutions described have still some room for improvement. The Ethernet over 
PCIe solution could benefit from HW interrupts to increase performance, and the driver on 
the RISC-V side could use a device tree entry for a better Linux integration. In addition, the 
Ethernet over QSFP solution is not achieving high speed rates when working along with a 
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RISC-V and a Linux driver, whereas within a bare-metal environment and with Microblaze, 
the Ethernet achieved speed is  around 22Gb/s.  
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Appendix I 

 

Table A shows the MEEP VPU characteristics used in each of the FPGA releases. 

MEEP VPU features 

 MEEP VPU v1.1 
(FPGA 1st release) 

MEEP VPU v2.2.1 
(FPGA 2nd release) 

Number of vector 
lanes Up to 16 (grouped in vector-lane pairs for smaller configurations (2-4-8)) 

Maximum vector 
length 128 elements x 64 bits 

ACME-classic mode 
   128 elements x 64 bits 
ACME mode 
   512 elements x 64 bits 

Number of FMAs 1 Fused Multiply Accumulate (FMA) unit per lane (2 DP FLOP/cycle) 

FP operation support Support for 64- and 32-bit FP operation 

Integer operation 
support 

Support for 64-, 32-, 16-, and 8-bit integer operations, signed and unsigned 

Vector Register File 
(VRF) 

VRF number of banks: 5. 
N of physical vector registers: 40. 
Single-Port limited access. 

VRF number of banks: 4. 
N of physical vector registers: 32  
Dual-Port access. 
Redesign of lane control logic to leverage 
VRF concurrent read/write accesses. 

RISC-V vector version RVV v0.7.1 

Core’s Interface OVI 1.0 [OVI] 

Memory’s interface OVI 1.0 OVI 1.0 & Direct Memory Access 

Direct access to L2 Through OVI Through OVI & Long Vector Register File 

Execution modes 
support 

ACME-classic mode  
   vector lanes config: 2,4,8,16 

ACME-classic mode 
   vector lanes config: 2,4,8,16 
ACME mode 
   vector lanes config: 2, 16 

Table A. MEEP VPU characteristics for each of the FPGA releases 


