

D6.4 v1.1 1 / 83

D6.4 -Full Emulation prototype release
Version 1.1

Document Information

Contract Number 946002

Project Website https://meep-project.eu

Contractual Deadline 30/06/2023

Dissemination Level Public (PU)

Nature Others

Author Teresa Cervero (BSC)

Contributors
Alexander Kropotov (BSC), Francelly Cano Ladino (BSC), Elias
Perdomo (BSC), David Castells (BSC), Blanca Sabater (BSC), , José
Oliver (BSC), Teresa Cervero (BSC)

Reviewers Behzad Salami (BSC), John Davis (BSC)

The MEEP project has received funding from the European High-Performance
Computing Joint Undertaking (JU) under grant agreement No 946002. The JU
receives support from the European Union’s Horizon 2020 research and
innovation programme and Spain, Croatia, Turkey.

© 2020 MEEP. The MareNostrum Experimental Exascale Platform. All rights reserved.

D6.4 v1.1 2 / 83

Change Log

Version Description of Change

v0.1 Initial structure

v0.2 Completing all content

v0.3 FPGA-cluster section is extended and internal review

v1.0 Version after internal review

v1.1
Second internal review: Sections reorganization, extending FPGA Cluster
section, results and conclusions.

D6.4 v1.1 3 / 83

COPYRIGHT

© Copyright by the MEEP consortium, 2020

This document contains material, which is the copyright of MEEP Consortium members and the
European Commission, and may not be reproduced or copied without permission, except as
mandated by the European Commission Grant Agreement no. 946002 for reviewing and
dissemination purposes.

ACKNOWLEDGEMENTS

The MEEP project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 946002. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and Spain, Croatia, Turkey.

The partners in the project are BARCELONA SUPERCOMPUTING CENTER - CENTRO
NACIONAL DE SUPERCOMPUTACION (BSC), FACULTY OF ELECTRICAL ENGINEERING AND
COMPUTING, UNIVERSITY OF ZAGREB (UNIZG-FER), & THE SCIENTIFIC AND
TECHNOLOGICAL RESEARCH COUNCIL OF TURKEY, INFORMATICS AND INFORMATION
SECURITY RESEARCH CENTER (TÜBITAK BILGEM).

The content of this document is the result of extensive discussions within the MEEP ©
Consortium as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does not
necessarily represent the views expressed by the European Commission or its services. The
information contained in this document is provided by the copyright holders ”as is” and any
express or implied warranties, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose are disclaimed. In no event shall the members
of the MEEP collaboration, including the copyright holders, or the European Commission be
liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including,
but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or
business interruption) however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence or otherwise) arising in any way out of the use of the
information contained in this document, even if advised of the possibility of such damage.

D6.4 v1.1 4 / 83

Contents

Executive Summary .. 6

Introduction .. 8

1. Work Package 6 overview .. 9

2.Updates on the MEEP FPGA Shell ... 10

2.1. HBM improvements ... 10

2.1.1. Support of Multiple Memory Controllers (Multi-MC) ... 10

2.1.2. Support for Memory Sandbox Tool ... 11

2.2. FPGA-to-FPGA communication: Adapting Aurora designs ... 16

2.3. Extending emulated accelerator support .. 18

2.3.1 Emulated accelerator design information: InfoROM .. 18

2.3.2. Emulated accelerators from AIT flow ... 19

3. MEEP FPGA flow: CI/CD improvements ... 20

3.1. CICD implementation .. 20

3.2. FPGA flow automation .. 21

3.2.1. Booting Linux: Buildroot ... 21

3.2.2. Bare-metal Benchmarks .. 22

3.2.3. Booting Fedora ... 23

3.2.4. Deploy .. 24

3.3. FPGA flow usability: Working environments ... 25

4. ACME Emulated Accelerator (ACME_EA) designs ... 26

4.1. ACME_EA designs by working environment .. 26

4.1.1. Production environment releases .. 26

4.1.2. Designs under development: Test and Quick-test environments 28

4.4. ACME_EA resources utilization .. 29

4.2.1 Production FPGA resources (U280) .. 29

4.2.2. Production FPGA resources (U55C) ... 31

4.2.3. Test FPGA resources ... 32

4.3. Final emulation FPGA release of the ACME_EA accelerator 32

5. MEEP FPGA-Cluster bring-up .. 34

5.1. Infrastructure .. 34

5.2. Configuration and setup .. 38

5.2.1 Basic configuration and setup .. 38

5.2.2. Advanced configuration and setup ... 40

D6.4 v1.1 5 / 83

5.2.3. Networking and usability .. 42

5.2.4. SLURM configuration .. 46

5.2.5. Infrastructure as a service (usability) .. 47

5.2.6. Configuration progress and status... 48

5.3 Capabilities and bring-up .. 49

5.3.1. Xilinx tests .. 51

5.3.2. Custom tests .. 56

5.4. Use Cases .. 61

5.4.1. b8c SpMV accelerator .. 61

5.4.2. FPGA and ACME designs: Proof of concept ... 64

6. Conclusions .. 66

6.1. Key Performance Indicators (KPIs) ... 67

6.2. MEEP FPGA contributions to other projects .. 69

Source code repositories ... 71

Appendix A... 72

Appendix I .. 76

Appendix II ... 77

Appendix III ... 80

Appendix IV ... 81

D6.4 v1.1 6 / 83

Executive Summary

This document completes the descriptions of the whole Hardware Stack and presents the
status of the MareNostrum Experimental Exascale Platform (MEEP) as a digital laboratory, in
which all the activities that have been developed during the project, converge.

In accordance with the DoA, this deliverable demonstrates the readiness of all the activities
developed in the different technical work packages (WP) during the lifetime of the MEEP
project. On one hand, the baseline Accelerated Compute and Memory Engine (ACME)
accelerator, developed in work package 4 (WP4), is implemented and validated as an emulated
accelerator on MEEP. For this, different targeted platforms have been used:

1) the ones available in Phase 1 (a set of 6 servers, where 4 of them include a Xilinx
Ultrascale U280 FPGA each, and 2 more a Xilinx Ultrascale U55c each), and

2) the one available in Phase 2 (the FPGA-cluster) to be used as digital laboratory.

On the other hand, the implementation of the different flavors of the ACME emulated
accelerator have been done by using the tools developed in WP6:

1) the MEEP FPGA Shell. This tool provides a seamless communication wrapper to any
design, in this case the ACME accelerator, for interacting with the host and/or any
other FPGA,

2) the FPGA flow. A mechanism developed to automate the bitstream generation in a way
that can be used as a pipe-clean process from RTL team, but also to schedule periodic
releases of the RTL designs to guarantee the readiness and compatibility of all the
programmed designs even after those have been updated; and

3) the FPGA tools. This is a set of tools specifically developed to facilitate scalability,
reusability and maintenance of all the different activities required to deploy and use a
bitstream: programmability, configurability and operability.

Finally, after the deployment of WP4 designs, using WP6 tools and infrastructure, WP5
developments are executed, starting from booting the image of the Operating System, and
continuing with the execution of different applications. This relationship between WPs is
shown in Figure 1.

Figure 1. Relationship among technical work packages (WP4, WP5 and WP6)

D6.4 v1.1 7 / 83

This D6.4 Full emulation prototype release (M42) complements the previous deliverables:

 D6.1 Emulation Platform specification (M6).
 D6.2 Emulated accelerator initial release (M18).
 D6.3 Emulated accelerator second release with full capability of inter-accelerator

communication (M36).

D6.4 Full emulation prototype release (M42) deeply explores and extends the communication
capabilities between emulated accelerators implemented on the MEEP FPGA Shell (FPGA Shell
from now on). This document describes a more advanced version of the second release of the
FPGA Shell. This new version extends communication capabilities for any targeted emulated
accelerator, although the scope of this document is constrained to the ACME accelerator
developed in MEEP project.

In accordance with the objectives of the work package 6 (WP6: FPGA programming/Tools
support and Emulation Integration):

● Aligned with the platform definition document (D6.1 Emulation platform
specifications), this document presents the status of the Emulation Platform
infrastructure, and the list of the tools associated to it (i.e., FPGA flow and FPGA tools).
With respect to the FPGA flow, in this period MEEP project has maintained, and
updated the workflow, refining the continuous integration and continuous
development (CICD) infrastructure. Now more stages of the FPGA flow have been
added to the process, and it is able to target different FPGAs (U280 or U55C) in
different infrastructures (Phase 1 or Phase 2).

● The FPGA Shell has been extended, with respect to the previous versions by adding
support for: 1) point-to-point communication using Aurora with DMA, 2) collecting
information of the generated design, and making accessible to any user through the
read of the InfoROM, and 3) maximizing the access of any accelerator to all the HBM
channels.

● Regarding the ACME as an emulated accelerator, by using different configurations of
the RTL design from WP4 as an input (including a many-core system), different
versions of it have been implemented and deployed on two different Xilinx Ultrascale
FPGA cards (i.e., U280 and U55C), targeting two different infrastructures (the one
available in Phase 1, and the last one available in Phase 2). More information about
the final ACME release is available in the deliverable D4.3 Full RTL for FPGA final
release.

D6.4 v1.1 8 / 83

Introduction

In this deliverable D6.4 Full emulation prototype release (M42), the full prototype will be
made ready, running some instances with many scalar processors, other instances with
scalar+vector. Second and final release of the FPGA Shell. The applications from WP5 will be
executed in the emulation environment. And an evaluation of the self-hosted accelerator will be
performed with a comparison to CPU-only, and when possible, GPU execution environments. The
evaluation criteria will include performance, ease of programming and tuning.

Moreover, this document completes the information related to the completion of the emulated
platform bring-up; which includes completing the assembly, configuration, setup and running
basics tests to guarantee the usability and operability of the machine as digital laboratory. The
deployment of the ACME design as a Proof of Concept (PoC) has served as a mechanism to
stress and tune some of the features of the system.

The document is structured as follows. Section 1 provides an overview of all the activities
developed in the WP6 during the life of the MEEP project, showing a clear roadmap of all the
activities from the moment the project started to its end.

Section 2 describes the updates on the FPGA Shell. It includes improvements on the point-to-
point communication using Aurora, and addition to support multiple channels for accessing
the HBM memory.

In Section 3 is reported the current status of the FPGA Tools developed during the lifetime of
the project, paying special attention to the updates on the FPGA flow.

Section 4 provides an analysis of the different flavors of the ACME as an emulated accelerator
deployed on the emulation platform.

Section 5 describes the final MEEP FPGA-cluster, and demonstrates its status after checking all
its components, features and characteristics.

Section 6 summarizes the achievements of this technical workpackage at the end of the MEEP
project. It also compares the results with the expected ones at the beginning of project, based
on the proposed Key Performance Indicators (KPI).

D6.4 v1.1 9 / 83

1. Work Package 6 overview

MareNostrum Experimental Exascale Platform (MEEP) is intended to become a Digital
Laboratory for exploring hardware/software co-design activities for European-developed IPs
targeting the design for Exascale Supercomputers. Thus, two main functionalities are pursued:

 Being used as an evaluation platform for pre-silicon validation of IPs and ideas at
speed and scale.

 Being used as a software development vehicle to enable software readiness for new
hardware, whereas the architecture is not ready in silicon.

Within this vision, the mission of this WP6 is to guarantee the proper delivery of the FPGA-
based emulation platform, which means the hardware infrastructure (racks, nodes, FPGAs…),
and the associated tools for allowing accessing, operating with it and take advantage of its
features.

At the moment of testing the correctness of any design, one of the main challenges that all
hardware developers face is having to deal with topics that are beyond their expertise. In many
cases the complexity relies on the communication IPs. All elements necessary to communicate
with the proper design, this is the case of IPs like PCIe, or Ethernet among others. Despite there
being some solutions in the market tackling this issue, when this MEEP project started they
lacked flexibility and did not incorporate modern drivers to exploit more advanced features.
Good examples of this lack of flexibility are the shells offered by Vitis1 and Amazon Web Service
(AWS)2. In both cases these shells are completely static, which means that all the offered IPs
must be present all the time, no matter what the needs of the emulated design are. On top of
that, it is not clear how to interact with those IPs, or how to exploit advanced features, like the
case of the QDMA driver for PCIe. In this sense the FPGA Shell is proposed as a flexible, scalable,
extensible, and easy to use option to hardware developers.

Since the emulation platform is based on FPGAs, MEEP project wants to offer a mechanism to
let users operate in a seamless way with the infrastructure, just being focused on those parts
of the design that they are interested in. This is the aim of the FPGA flow developed during the
project.

1 Vitis: https://www.xilinx.com/products/design-tools/vitis.html
2 AWS: https://github.com/aws/aws-fpga

D6.4 v1.1 10 / 83

2.Updates on the MEEP FPGA Shell

From D4.3 deliverable, the FPGA Shell has been extended by adding the following capabilities:

 Related to main memory, HBM: 1) support of multiple memory controllers (Multi-MC),
and 2) support of HBM characterization and exploration with the Memory Sandbox
tool.

 Related to FPGA-to-FPGA communication: support for Aurora design, with DMA
capabilities, to enable slow FPGA to FPGA communication.

 Related to emulated accelerators: 1) support for providing information about a design
by using the InfoROM module, and 2) support for being compatible with AIT, and
support its designs as emulated accelerators.

2.1. HBM improvements

HBM is an important module on the FPGA. It plays the role of main memory and enables the
self-hosting capability for the ACME accelerator. The Alveo FPGAs U280 and U55C include two
stacks, each of them with 8 memory controllers. The following improvements contribute to
better understanding HBM capabilities and to exploit the maximum bandwidth of the HBM.

2.1.1. Support of Multiple Memory Controllers (Multi-MC)

HBM consists of multiple SDRAM cores each controlled by its own MC. The newest version of
FPGA Shell supports an arbitrary number of AXI-MM channels for connecting an accelerator to
multiple Memory Controllers (MC). Therefore, this feature is beneficial for enabling the high
bandwidth nature of HBM due to the fact. Thus, utilization of multiple MC connections
potentially increases concurrency of data exchange in a multi-core system through
distribution of concurrent memory accesses over multiple MCs. Moreover, this improvement
unlocks the Multi-MC option already available in ACME accelerator, ensuring fully
compatibility from both sides, the FPGA Shell and the accelerator.

This Multi-MC feature extends the previous capabilities of the FPGA Shell, and consequently
two options of Multi-MC usage can be used with any emulated accelerator, being used ACME
as a PoC: 1) using only one MC for accessing to cacheable data in HBM, and 2) using multiple
MCs.

The former case is shown in Figure 2, which presents a legacy way of connecting system
memory in the OpenPiton framework (used for building ACME) - through the single up-left
corner tile (as an example). For internal needs ACME requires two types of HBM connection:
cached access for normal computations and non-cached for sharing data with DMA.

D6.4 v1.1 11 / 83

Figure 2: Connection of ACME single corner tile to the HBM of FPGA shell using two fixed MC
channels.

In Figure 3 cached access is extended to multiple connections utilizing arbitrary configurable
number of available edge tiles of ACME mesh. If multi-MC feature is enabled in ACME,
“Minimum Manhattan distance” policy is used for routing memory accesses from any
computing tile to an edge tile having MC connection. The FPGA Shell provides connection of
those tiles to HBM within a physical limit of the number of HBM channels. The Multi-MC option
is also reused in extension of ACME with “Memory Tiles”. Extra required MC channels should
be enabled in the main FPGA Shell configuration file, where all required interfaces are
configured: acceleartor_def.csv.

Figure 3: Connection of ACME multiple edge tiles to the HBM of FPGA Shell using an arbitrary

number of MC channels.

More details about the impact of this feature on ACME are provided in Deliverable 5.4 Final
release of the software stack, Section 3.1 Hardware Co-design: HMB Tests with Stream.

2.1.2. Support for Memory Sandbox Tool

An initial analysis of the performance characteristics of typical memory access patterns
simplifes us to implement benchmarks to reveal the subjacent characteristics of HBM in FPGAs.

D6.4 v1.1 12 / 83

For this purpose, we emulate the typical sequential accesses with the widely used in FPGA
programming: Repetitive Sequential Traversal (RST) access pattern and sparse accesses with
pseudo-random accesses. Since DDR4 is the most popular memory used in computer
architectures with FPGAs, the following sections present a comparison.

The Memory Sandbox tool is a tool conceived to help developers to better understand the
intrinsic details of HBM on the FPGA. It provides higher configurability, insights, and control
over measurements (e.g., clock cycles of each memory transaction). The tool is a configurable
environment composed of two components: 1) a user interface for setting-up the experiments
(front-end), and 2) a set of hardware IPs to run the experiments in the FPGA, according to the
data introduced in the front-end (back-end). A block diagram of our tool is shown in Figure 4.

Figure 4. Hardware architecture of the Memory Sandbox Tool.

The front-end provides flexibility in terms of configuring run-time parameters. These
parameters reduce the FPGA reconfiguration when a memory analysis is performed.

The back-end mimics processor threads data requests with sequential, or pseudo-random
memory access patterns. This is done by the highly configurable AXI Traffic Generator IP,
which minimizes its impact on the measured performance (throughput and latency) and
guarantees that the data packages are only relative only to memory, whether it is HBM or DDR.

Our Memory Sandbox tool enables software readiness for new hardware and can be used to
emulate a diverse set of architectures with different kinds of processing threads, and different
access patterns.

The Memory Sandbox tool does not need to regenerate a bitstream to do explore the different
features of the HBM, nor recode the IPs. This capability saves time on memory exploration.
Therefore, with the same Memory Sandbox configuration (FPGA bitstream), a user might
enable different experiments by changing parameters’ values. The number of experiments for
the same bitstream can be calculated based on the parameters goes to 270.

To validate the functionality of the Memory Sandbox tool, several experiments were
conducted. The secondary goal of the experiments is to better understand the main differences
between DDR4 memory and HBM on the FPGA. These experiments were performed on a Xilinx
Alveo U280, since includes both kinds of memories, DDR4 and HBM. Table 1 summarizes the
nature of those experiments, and the conclusions. More details about the experiments in
Appendix A.

D6.4 v1.1 13 / 83

Table 1 Throughput analysis comparison between DDR4 and HBM, based on the address
mapping policies.

Experiment Description Conclusions
Baseline throughput &
address mapping policies

All pseudo-channels are accessed
simultaneously.
Sequential access.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

= 𝑃𝑠𝑒𝑢𝑑𝑜𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

 HBM memory controller
handles two pseudo-
channels without losing
performance.

 Best throughput = default
policy.

 Read and write transactions
follow the same trend,
regardless of the policy.

 Best throughput:
 DDR4 = 6.18% <BW
 HBM = 0.01% <BW.
 Worst throughput:
 DDR4: 92.02%<BW
 HBM: 56.39%<BW
 At max. throughput:
 DDR4= 19.2 GB/s / bank
 HBM = 14.4GB/s / bank
 DDR4 max throughput ≤ 4x

HBM_banks.

Address mapping policies (Table 2)

DDR4 results: Figure 5
HBM results: Figure 6

Micro-switches cross-
domain

Understanding how HBM behaves
when accessing different memory
regions across pseudo-channels
and micro-switches.

Sequential access.

Single thread PE.

Burst size = 16, RBC=true.

HBM results: Figure 7 (baseline) 8**

*WR: Write
 RD: Read
**A: different pseudo-channel emulating a
single-thread PE connected to AXI0

 Pseudo-channels’
throughput, on the same
micro-switch, is the
same.

 Throughput decreases
50% when PE leaves the
micro-switch to which is
connected.

Burst impact on
performance

Understanding impact of sparse
memory accesses (data in non-
consecutive addresses in the same
bank).

Single thread PE.

Baseline comparison:

Sequential access.
Burst size= 1 element= 1 beat= 256
bits= 32 Bytes.

Results: Figure 8.B

 2≤Burst≤8 ⇒ No
throughput difference.

 No Burst ⇒ Throughput
decreases 30%, when
AXI port access its micro-
switch.

Randomizing inside a
pseudo-channel

Understanding impact of sparse
memory accesses (data in different
banks).

Single thread PE.

 Throughput: No
difference within the
same HBM stack.

 First stack: write
transactions, all AXI

D6.4 v1.1 14 / 83

Results: Figure 8.C ports throughput
decreases 44%.

 First stack: write
transactions, vertical
accesses, throughput
reduces 65%.

Randomizing across
different pseudo-channels

Understanding impact of sparse
memory accesses (randomizing
address inside pseudo-channel and
the pseudo-channel to be accessed)

Single thread PE.

Results: Figure 8.D

 Throughput decreases to
0.61% for write
transactions.

 Throughput decreases to
0.17% for read
transactions.

Simultaneous accesses to
the same pseudo-channel

Multiple Traffic-Generators
accessing the same pseudo-channel
0.
Sequential access.

Results: Figure 9

 All Pes connected to the
same micro-switch have
similar behavior.

 Throughput is reduced
50% when PE=2 (Figure
9.B).

 Throughput is reduced to
32% when PE=3 (Figure
9.C).

 Throughput is reduced to
25% when PE=4 (Figure
9.D).

 Figures 9.E/F/G
represents PE=8 in
different micro-switches.

Table 2 Address Mapping policies for HBM and DDR4. Default Policies Are Marked in Bold

Policy HBM (app addr[27:5])[21] DDR4 (app addr[33:6])[22]

RBC 14R-2BG-2B-5C 17R-2BG-2B-7C

RCB 14R-5C-2BG-2B 17R-7C-2B-2BG

RCBI N/A 17R-6C-2B-1C-2BG

BRC 2BG-2B-14R-5C 2BG-2B-17R-7C

RGBCG 14R-1BG-2B-5C-1BG N/A

BRGCG 2B-14R-1BG-5C-1BG N/A

D6.4 v1.1 15 / 83

Figure 5. Throughput for DDR4 Address Mapping Policies.

Figure 6. Throughput for HBM Address Mapping Policies.

Figure 7. HBM pseudo-channel Throughput with Address Mapping Policies.

D6.4 v1.1 16 / 83

Figure 8. HBM Throughput in different micro-switches.

Figure 9. Simultaneous access for different micro-switches.

As expected, the throughput performance was more than 12 times better when using all 32
pseudo-channels in the HBM in parallel than when using the 2 memory banks present in the
DDR. The different address mapping policies, the burst size, accesses within a micro-switch or
external ones and the randomization of the address can have a huge impact on the HBM
throughput.

This analysis makes an important contribution to the state of the art regarding the impact in
HBM performance of pseudo-random accesses across and within the pseudo-channels and the
concurrent access to a same memory region. In addition to that, the Memory Sandbox tool is
valid not only to the provided test scenarios, but designers and researchers can also create
their own.

2.2. FPGA-to-FPGA communication: Adapting Aurora designs

The new version of FPGA Shell supports Xilinx proprietary light-weight high-speed protocol
for external communications - Aurora. Aurora is a relatively simple protocol that has been

D6.4 v1.1 17 / 83

designed to allow other protocols such as TCP/IP to ride on top of it. It uses one or more high-
speed serial GT lanes. It can be referenced to a second or Data Link Layer of the OSI model (the
layer where data packets are encoded and decoded into bits). Xilinx provides an IP core for
implementation of this protocol: Aurora 64B/66B3. This IP core optionally includes SerDes
hard-macro around FPGA GT differential pin pairs. On the other side Aurora 64B/66B provides
receive and transmit 256-bit wide AXI4-Stream channels. Initial experiments with this IP were
reported in deliverable D6.2 Emulated accelerator initial release, section 4.3.2 Aurora.

Full Aurora subsystem instantiated in the FPGA Shell also includes AXI DMA engine for
providing communications over Aurora by a software. Figure 10 presents the internal
structure of the Aurora DMA subsystem.

Figure 10: Structure of Aurora DMA subsystem compliant with MEEP FPGA Shell

In addition, the Aurora subsystem contains logics for control, buffering and diagnostic
purposes. By default Aurora IP is configured to use all 4 GTY lanes connected to an optical
QSFP+ connector of Alveo FPGA boards, 10 Gb/s per each lane. The performance results,
measured in terms of bandwidth, obtained for the Aurora DMA solution under Buildroot Linux
are measured by using the test application running on a single-core ACME system. Non-cached
region of HBM has been used for configuration of Xilinx DMA. The achieved bandwidth of data
exchange between two boards is around 3.5 Gb/s. In addition, our test includes, checking the
integrity of the exchanged data, and exchanging the ICMP (Internet Control Message Protocol)
packets on the basis of standard PING command, as an example of running IP protocol packets
over the Aurora link layer.

3 Aurora 64B/66B: https://www.xilinx.com/products/intellectual-property/aurora64b66b.html

D6.4 v1.1 18 / 83

The resource utilization report for the Aurora DMA solution is shown in Figure 11. As seen, the
main source of resource consumption is the Xilinx DMA, which uses around 9K LUTs, whereas
the Aurora IP uses around 1.7K LUTs.

Figure 11: Utilization report highlighting the Aurora DMA subsystem.

2.3. Extending emulated accelerator support

The new version of the FPGA Shell includes two new features related to any emulated
accelerator. One of them is a ROM memory with information related to the final design
generated. This data is written during the bitstream generation. The other feature is the
compatibility with AIT, which allows the generation of bitstreams from application code.

2.3.1 Emulated accelerator design information: InfoROM

The infoROM is a memory hardcoded in the FPGA Shell. It stores and displays basic information
about a design generated using the FPGA flow, including the date of the project generation, the
SHA values of the Shell and the Accelerator, and the IDs of the active interfaces in the FPGA
Shell.

This module plays an important role in the configuration of the FPGA Shell by facilitating the
storage, retrieval, and display of essential project information, as it is shown in Figure 12. Its
implementation uses a BROM, with a BRAM address width of 13 and a Memory data width of
32. It also includes a single AXI slave interface, shared with the HBM from the QDMA. The ROM
has a range of 8K, with the master base address at 0x200000000 and the master high address
at 0x200001FFF.

D6.4 v1.1 19 / 83

Figure 12: Output of infoROM

2.3.2. Emulated accelerators from AIT flow

The difference between the FPGA Shell when compared to Amazon F1 (Amazon Web Services,
2023) and the Xilinx Vitis Platform (AMD Xilinx, 2023) lies in its configurable hardware, the
use of QDMA, and the Ethernet-over-PCI mechanism. In addition to that, the MEEP FPGA Shell
provides hardware/software support for RISC-V-based emulated accelerators, which allows
bidirectional communication between the host and the RISC-V emulated accelerator.

Adding support for integrating AIT with the FPGA Shell expands the nature of the supported
emulated accelerators, encompassing not only hardware-based designs but also incorporating
the possibility to offload software tasks to FPGA devices. AIT flow uses OmpSs@FPGA to create
FPGA accelerators from application-level code. The integration with the MEEP FPGA Shell
makes AIT design board agnostic and permits to take advantage of all the FPGA Shell features.

A detailed explanation of the AIT + MEEP FPGA Shell integration is provided in deliverable D6.5
-First AIT release.

D6.4 v1.1 20 / 83

 3. MEEP FPGA flow: CI/CD improvements

This section complements the information included in deliverables D6.2 Emulated Accelerator
initial release, Section 4.4 CI/CD for the MEEP FPGA Shell, and D6.3 Emulated accelerator second
release with full capability of inter-accelerator communication, Section 5 Continuous integration
and Continuous delivery for the FPGA flow.

Deliverable D6.3 presented the role of CI/CD to support the FPGA flow. It described details
about the implementation of the infrastructure used to generate a common tool for supporting
development tasks of three different groups (i.e., RTL (WP4), Software (WP5), and FPGA
(WP6)), and improving the MEEP project performance.

The improvements on the MEEP FPGA flow are relative to three main areas:

1) CICD implementation
2) FPGA flow automation
3) FPGA flow usability

3.1. CICD implementation

There are significant updates aimed to improve the efficiency of the CICD:

- Docker images: Dockers images has been integrated as runners to improve the
working system with the MEEP servers. These images improve the memory space on
the servers since the builds are cleaned up automatically once the run has been
completed. Moreover, these runners map the Vivado version according to each server
where the Docker image runs.

- Licenses: Another important aspect is that some licenses from some specific IP, for
example, UltraScale+ Integrated 100G Ethernet Subsystem (AMD Xilinx, n.d.), have
been associated to those runners.

- Networking: Docker images have been configured to use the same MAC address as the
server they run. This avoids issues with the licenses. This policy is going to be
propagated to all the FPGA repositories.

- Dashboard: To simplify data visualization, some time has been devoted to develop an
automatic dashboard, based on storing on a database results from the FPGA flow, and
representing them using Grafana. Significant progress has been made in adding
dockers for MySQL, phpMyAdmin, and Grafana. The idea is to parse the resource files
to show using a Python script and create tables to deploy on the database using MySQL
commands. PhpMyAdim helps users to work with database information, using a GUI
(Figure 13). This task is not completed, and we plan to continue it in subsequent
projects.

D6.4 v1.1 21 / 83

Figure 13. Work in Progress dashboard using Grafana

3.2. FPGA flow automation

As it was presented in deliverable D6.3, the FPGA flow automates the generation of a bitstream,
going through the synthesis, implementation, reports, and bitstream generation stages. In
addition to that, the FPGA flow is a bridge between RTL (WP4) and software (WP5) teams,
which must provide a certain level of reliability on the delivered design. With this purpose, the
FPGA flow has improved the validation stage of a bitstream by adding more reliable FPGA tests
in the form of Linux booting, execution of bare-metal benchmarks, and Linux distro execution,
as it is shown in Figure 14. The drivers, ONIC drivers, for this hardware validation are an
essential part of the whole process. More information about these drivers in deliverable D6.3.
and D5.4. The flow chart used by MEEP FPGA for the CICD flow is present in Appendix III.

In parallel with the automation of this validation process, most of the FPGA tools (fpga_tools)
have been updated to be compliant with requirements either the FPGA flow or the Phase_2
infrastructure (MEEP cluster).

Figure 14. New FPGA test added to the FPGA flow.

3.2.1. Booting Linux: Buildroot

The Linux test was the first test included. It continues to be part of the flow. It is required to
load the bitstream to the FPGA. Then, when we boot, we will validate using the UART output
log to find a coincidence that helps validate the test. A detailed explanation can be found
deliverable D6.3, Section Continuous Integration and Continuous Delivery for the FPGA flow.

D6.4 v1.1 22 / 83

3.2.2. Bare-metal Benchmarks

The bare-metal benchmark is a submodule of the ACME_EA repository. The definition of the
ACME bitstream determines if the system is single-core or multi-core. The flow will compile
the list of tests suitable for each case according to the number of cores. These tests are from
repository hosts unit tests for RISC-V processors. (riscv-software-src, 2023). To complete the
list, new benchmarks have been included (MEEP, 2023). The list of benchmarks is collected in
Table 3, for a single-core design, and Table 4, for a multi-core design.

Table 3. RISC-V Bare-metal Benchmarks for a single core system

Test RISC-V Benchmark Operation Problem Size Test Name

1 histogram Integer 1024 histrogram.riscv

2 median Integer 1024 int-median.riscv

3 multiply Integer. 1024 int-multiply.riscv

4 qsort Integer. 2048 qsort.riscv

5 rsort Integer. 2048 rsort.riscv

6 spmv Integer. 1000 x 1000 10004 nnz int-smpv.riscv

7 vvadd Integer. 1024 int-vadd.riscv

8 matrix mult. Integer. 64 x 64 int-matrix_mult.riscv

9 fibonacci Integer. 25 fibonacci.riscv

10 towers Integer. 7 discs 40 runs towers.riscv

11 bubblesort Integer. 1024 int-bubblesort.riscv

12 median Floating Point. 1024 fd-median.riscv

13 multiply Floating Point. 1024 fd-multiply.riscv

14 spmv Floating Point. 1000 x 1000 10004 nnz fd-smpv.riscv

15 vadd Floating Point. 1024 fd-vadd.riscv

16 matrix mult Floating Point. 64 x 64 fd-matrix_mult.riscv

17 bubblesort Floating Point. 1024 fd-bubblesort.riscv

18 dhrystone Integer. 500 dhrystone.riscv

19 matrix mult (mm) Floating Point. -- mm.riscv

Table 4. RISC-V Bare-metal Benchmarks for a multi-core system

Test RISC-V Benchmark Operation Problem Size Test Name

1 matrix mult. Floating Point. 4096 mt-matmul.riscv

D6.4 v1.1 23 / 83

2 vvadd Floating Point. 4096 mt-vvadd.riscv

3 axpy Floating Point. 16384 mt-axpy.riscv

4 somier Floating Point. 1024 mt-somier.ricv

5 histogram Integer. 1024 mt-histogram.riscv

6 stream Floating Point. 16384 mt-stream-copy.riscv

7 stream Floating Point. 8192 mt-stream-triad.riscv

8 is Integer. 1024 mt-int-sort.riscv

3.2.3. Booting Fedora

The third test is booting Fedora distribution. More information about Fedora image in
deliverable D5.4 Final release of the software stack, Section 4.1 Operating System. The booting
process is the same as the Linux stage (booting Buildroot), but now for a different element, the
OpenSBI binary. In both booting processes, Linux and Fedora, the device tree is used to build
the image. Consequently, the bitstream must be updated and synchronized with the drivers in
the binaries to boot without errors. This is a suitable methodology to prevent hardcoded
memory addresses. Everything depends on the device tree data of the ACME_EA. Figure 15 is
a screenshot of the Fedora booting process on top of the ACME accelerator.

Figure 15. Booting Fedora output

D6.4 v1.1 24 / 83

3.2.4. Deploy

The final deployment contains a structure of folders where the different information is written.
The resultant folder structure is shown in Figure 16.

- Bin: Includes all the binaries of the benchmarks according to the number of cores of
the system.

- Bitstream: Contains all the bitstreams generated for each environment. The bitstream
name includes the pipeline date, the ACME_EA flavor name, and associated
environment used for its generation.

- Boot: Includes the OPENSBI binary, and the script to boot any binary for the ACME
accelerator.

- Dcp: Contains design’s checkpoints for each ACME_EA flavor, including information
for their synthesis and implementation stages.

- dts: This folder keeps the devices tree generated from the OpenPiton framework, for
each of the ACME_EA flavor.

- logs: Contains the output results of booting Linux/Buildroot and the Fedora stages.
- project: This folder contains the most important files of the flow: system_top.sv and

gen_system.tcl.
- reports: Includes all the reports generated during the synthesis and implementation.
- Test_logs: Store the results of the bare-metal benchmarks execution.
- The final script contains: 1) the commit SHA (commit_sha.txt) to identify the FPGA

Shell version and the MEEP ACME_EA commit (EA_info.txt) version used for a
deployment. It also includes the output log (make_project.log) when the project was
generated (date.txt).

Figure 16. Deploy structure on MEEP servers

D6.4 v1.1 25 / 83

3.3. FPGA flow usability: Working environments

An environment refers to an FPGA flow with a determined configuration and a well-defined
purpose. The MEEP CICD has improved its support to the FPGA flow. Therefore, different
environments and new tests were included to automate the validation of a hardware design
along the different stages of the FPGA flow. This section is focused on the validation of the final
emulated design, once the bitstream has been generated.

Thus, two different environments have been set:

- Production: Production is the main environment. All the hardware deployed will be
accessible to the end user. This environment needs to be stable and reliable. The
information is highly available, and there are two places where the data can be found.
The first one is the MEEP servers, and there is a special place where all the information
is shared among the servers. The second one is the Nexus Repository Manager,
http://release.meep-project.eu . Here, it only deploys the production bitstreams.

- Development: Two different development or pre-production environments are
enabled: 1) Test, and 2) Quick-test. These pre-production environments help
developers to test and debug new features for under-development designs, before
being deployed to the Production environment.

The differences between Test and Quick-test environments are: 1) how the design is
implemented, 2) the elements involved, and 3) The number of Emulated Accelerators
that can be tested at once.

o Test: We can use the keyword "matrix" to test different configurations in the
same pipeline using the GitLab ci tool. In this manner, the FPGA CI flow can
ensure that changes are thoroughly tested and validated before they are
deployed to Production.

o Quick-test: The Quick-test environment only can test one EA configuration.
Still, it helps the RTL and FPGA developer speed up the process to continue the
analysis with the other domains.

Table 5 describes how the developers can use each environment, explaining the main elements
involved in the process.

Table 5. FPGA flow environments

Environment Description Source Elements

Production
Help to ensure the stability and

reliability of bitstreams

- Merge request
- Schedule

(monthly)

Design: acme_ea
Routers: Pronoc
Board: U280, U55C

Test

Help developers to thoroughly test
and validate design changes for

configurations of emulated
accelerators.

Commit message
#TestCICD

Design: acme_ea
Routers: OpenPiton
Board: U280, U55C

Quick-test

Help to speed up the analysis for one
specific under-development

configuration design of an emulated
accelerator.

Gitlab web page
Design: any ea
Routers: OpenPiton
Board: U55C

D6.4 v1.1 26 / 83

4. ACME Emulated Accelerator (ACME_EA) designs

This section presents results of the final release of the ACME accelerator, presented in
deliverable D4.3 Full RTL for FPGA release, as an emulated accelerator (ACME_EA) on the FPGA
platform. Different modules have been developed by the RTL team as part of the ACME
accelerator: scalar core, vector accelerators (VPU and Systolic Arrays (SA-HEVC, and SA-NN)),
and Memory Tile.

Figure 17 summarizes the information of this section, in which information of different
ACME_EA configurations is presented. Moreover, this section combines the working
environments and the ACME accelerator designs. To clearly identify each of the design’s
configuration the naming convention agreed by all the technical work packages (WP4-WP6-
WP5) is followed. This terminology is explained in deliverable D4.3, section XX Naming
convention.

Figure 17. Diagram overview system.

Evaluating and comparing the elements presented here are vital in assessing performance and
driving progress. A comparative analysis of two distinct environments will be shown:
Production and Test. The MEEP FPGA focus will be on examining the elements within each
domain and exploring the results generated over the past three months. Understanding these
elements' unique characteristics and outcomes can help gain valuable insights into their
performance.

4.1. ACME_EA designs by working environment

4.1.1. Production environment releases

Production releases only include results from stable configurations of the ACME_EA
accelerator. That means, those ACME flavors that have passed successfully all the FPGA Flow
stages. These emulated accelerators use ProNoC as routers and have been implemented
targeting the two different boards available in MEEP infrastructures: U280 and U55C.

D6.4 v1.1 27 / 83

Four different configurations have been promoted to Production, and their deployment results
are available in Nexus Cloud:

- ACME EA 4A: This design is used as a reference platform by WP5. It is a multi-core
system with Ariane as scalar core and no vector accelerator.

- ACME EA 1H: This is the simplest configuration of the ACME accelerator when using
Lagarto Hun as scalar core. This is a single core design with no vector accelerators.

- ACME EA 4H2V: This design scales the previous one, to 4 cores. Moreover, each of the
cores includes a MEEP.VPU with only 2 vector lanes.

- ACME EA 1H2G: This design is a single core design with the three vector accelerators
developed during the project (VPU, SA-HEVC and SA-NN).

Table 6 summarizes the characteristics of each of these previous ACME_EA designs. As it is
shown here, any of these ACME_EA accelerators include a Memory Tile in Production. This is
because the Memory Tile is not mature enough to be considered stable. As a consequence,
these designs only might be set to execute in classic-mode.

Although the Memory Tile has been integrated in ACME design, some problems arose during
the FPGA flow, which made no possible to get results, neither under the Test environment.
That means that only RTL simulations results are offered for a full design, as it is reported in
deliverable D4.3.

In addition to this, evaluation results for ACME EA 4A and ACME EA 4H2V have been
performed by WP5, and reported in deliverable D5.4, Section 5 Evaluated environments.

Table 6. Production releases 2023

Description ACME EA 4A ACME EA 1H ACME EA 4H2V ACME EA 1H2G

Architecture Multi-core Single core Multi-core Single core

NoC ProNoC

core

Core Ariane ACME VAS Tile (Lagarto Hun + vector accelerators)

Scalar Core
RV64GC (6 stages),

in-order, double
issue

RV64GC (5 stages), in-order, single-issue

VPU No No MEEP.VPU MEEP.VPU
RVV v0.7.1 No No Yes Yes

 Custom SA No No No Yes

Config. L2 size Yes Yes Yes Yes
Config. L1 cache line No Yes Yes Yes

Number of Tiles 2x2 1 2x2 1
Linux OS support Buildroot (OpenSBI), Fedora

Host/Device comm. PCIe, Ethernet over PCIe
FPGA Shell support Yes

Memory Tiles No No No No
Clock frequency 50 MHz 50 MHz 50 MHz 50 MHz

exec
mode

classic-mode Yes Yes Yes Yes

acme-mode - - - -

D6.4 v1.1 28 / 83

4.1.2. Designs under development: Test and Quick-test environments

Test and Quick-test environments use OpenPiton routers for any of the ACME_EA designs, and
the targeted boards are: U280 and U55C for Test, and U55C for Quick-test.

Two new designs are run under Test, as it is shown in Table 7, in addition to the ones presented
in Production:

- ACME EA 1H16V: This design pursues two things: 1) stress the FPGA flow and check
the availability of resources on the FPGA to place and route a system with a single core
and a VPU with 16 vector lanes; and 2) demonstrate the functionality of this MEEP.VPU
configuration.

- ACME EA 16H: This configuration demonstrates the scalability feature of the ACME
design.

One of the problems faced with these designs is that they do not always close timing. These
designs are heavy in FPGA resources, and that makes close timing difficult during the place &
route stage of the FPGA flow. This instability prevents them from being promoted to
Production. However, for testing purposes, WP5 used one of the generated bitstreams that
completed the FPGA flow, even under the Test environment, for running some experiments.

Table 7. Test releases 2023

Description ACME EA 1H16V ACME EA 16H

Architecture Single core Multi-core

NoC OpenPiton Routers

core

Core ACME VAS Tile (Lagarto Hun + vector accelerators support)

scalar core RV64GC (5 stages), in-order, single issue

VPU Yes No

RVV
v0.7.1 Yes No

Custom SA No No

Config L2 size Yes Yes

Config L1 cache line No No

number of Tiles No 4x4 mesh

Linux OS support Buildroot, Fedora Buildroot, Fedora

Host/Device comm PCIe, Ethernet over PCIe PCIe, Ethernet over PCIe

FPGA Shell support Yes Yes

Memory Tiles No No

Clock frequency 50 MHz 50MHz

exec
mode

classic-mode Yes Yes

acme-mode - -

D6.4 v1.1 29 / 83

4.4. ACME_EA resources utilization

This section presents the resource utilization resources for the previous ACME_EA designs.

4.2.1 Production FPGA resources (U280)

Figure 18. ACME EA 4A Production release for U280 board.

Figure 19. ACME_EA_1H Production release for U280 board.

Figure 20. ACME EA 4H2V Production release for U280 board.

D6.4 v1.1 30 / 83

Figure 21. ACME EA 1H2G Production release for U280 board.

Figure 22. FPGA Shell using U280 board.

These figures (Figure 18, 19, 20 and 21) depict the report utilization using the U280 FPGA
board for the Production environment, whereas Figure 22 represents the resource utilization
exclusively for the FPGA Shell. Table 8 collects all these results.

Table 8. ACME EA releases resource utilization on U280

Design CLBs BRAM Figure
ACME EA 4A 7% 2% 30
ACME EA 1H 7% 2% 31
ACME EA 4H2V 20% per Tile

80% in total
8%
24% in total

32

ACME EA 1H2G 54% per Tile 8% 33
FPGA Shell 15% in total 6% 34

In the case of the Lagarto Hun core releases, there are three different configurations and
different complexities:

- ACME EA 1H is a light system.

D6.4 v1.1 31 / 83

- ACME EA 4H2V. The heaviest part of the design is the VPU. Four tiles use 80% of the
total CLB available on the U280 board, and including the FPGA Shell, the CLBs reaches
around 95% of the total.

- ACME EA 1H2G. This flavor is a single-core system using two vector lanes of VPU and
also including the two SAs (SA-HEVC and SA-NN). The CLB utilization for one tile is
around 54% of the total. Including the numbers of the FPGA Shell, it can be 70% of the
total CLB elements.

4.2.2. Production FPGA resources (U55C)

Similar results have been obtained when targeting the U55C board. More details about the
results in Appendix IV.

Here only the ACME EA 1H2G configuration has been included for representing the whole
group of designs. (Figure 23 and Figure 24)

Figure 23. ACME_EA_1H2G Production release for U55C board.

Figure 24. FPGA Shell using U55C board.

As expected, comparing results in both FPGAs, U280 and U55C, there is not a big difference in
terms of resources.

D6.4 v1.1 32 / 83

4.2.3. Test FPGA resources

As it was previously mentioned, the bitstream generation of ACME EA 1H16V and ACME EA 16H
designs was challenging, due to the place & route stage. Actually, there are situations for the
ACME EA 1H16V where a tile uses 85% of total CLBs. A similar situation is faced with ACME
EA 16H, in which one tile uses around 5% of the CLBs, and therefore, the 16 tiles require 80%
of CLB resources of the total.

FPGA Shell has a technique to improve place & route results using different policies iteratively
until closing timing. This feature is available for FPGA developers using the Test environment,
and that is how the new methodology includes creating a plan for place_design according to
the board type and having them in an incremental loop over the strategy for the route_design
process.

Appendix II shows the last release resources results we have available now. Both boards faced
the same issue. The previous release shows that the new methodology works, and we can
complete the implementation phase.

4.3. Final emulation FPGA release of the ACME_EA accelerator

Results shown in previous sections on the FPGA have been obtained using the more advanced
version of the ACME_EA accelerator, which includes new features with respect to the second
release presented in the deliverable D6.3, Section 4 ACME Emulated Accelerator (ACME_EA).
For clarity, Table 9 compares the evolution of the ACME accelerator from the first to this final
release.

Table 9. Characterization of the first and second FPGA release of the ACME_EA accelerator

Description

ACME_EA FPGA 1st
release

ACME_EA FPGA 2nd
release ACME_EA FPGA 3rd release

M18 M36 M42

Architecture single core many-core

NoC Bus NoC (Routers support: OpenPiton and ProNoC routers)

core

ACME VAS
Tile core

scalar core + VPU
scalar core + VPU + SAs +

LVRF

scalar core
RV64IMA (5 stages)

In-order
RV64GC (5 stages)

In-order
RV64GC (5 stages)

In-order, with branch-predictor

VPU
MEEP.VPU v1.0
(See Appendix I)

MEEP.VPU v2.2.1
(See Appendix I)

MEEP.VPU v3.0

RVV v0.7.1 Yes Yes Yes

Custom SA No No Yes

Memory Tile No No Yes

Config L2 size Yes Yes Yes

D6.4 v1.1 33 / 83

Config L1 cache line No No Yes

Number of Tiles No Yes (2x2* 2D-mesh)

Language SystemVerilog and
Chisel

SystemVerilog

Linux OS support Yes (buildroot) Yes (Fedora 31) Yes (Fedora 33)

Host/Device
communication

PCIe
PCIe, Ethernet over

PCIe
PCIe, Ethernet over PCIe,

Ethernet 100GbE

FPGA Shell support Yes Yes Yes

Memory Controllers
(MCs)

N/A
Support for Multi-MCs

(from ACME)
support for Mult-MCs (from the

Shell)

Clock frequency 50 MHz 50MHz and 100MHz* 50MHz

exec
mode

classic-mode
Yes (scalar)

Yes (scalar + vector
{axpy 2:16 lanes})

Yes (scalar + vector{axpy,
spmv, dgemm, fft 2:16lanes})

acme-mode No Yes** Yes

M36 is the evolution of M18, and it is under development by the RTL team.

*100MHz is only possible when the many-core system only includes the scalar core in each of the Tiles.

Running the system at 50MHz allows the manycore system to close timing with a 4x4 configuration, when the tile
includes the scalar core and the VPU.

**Tested with the LVRF isolated (data preloaded in the register), running a few instructions; and no MT in the system

The Emulated Accelerator releases are available in the MEEP Gitlab repository, where the main
features of the different releases are also described, and a link to each of the bitstreams is
provided: https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/fpga_shell/-
/wikis/MEEP-FPGA-Releases.

D6.4 v1.1 34 / 83

5. MEEP FPGA-Cluster bring-up

This section describes the status of the MEEP FPGA cluster or FPGA-based digital laboratory,
not only in terms of the configuration and setup of the infrastructure, but also the set of tools
developed around it to supports HW/SW co-design activities of emerging technologies, based
on European-developed IPs.

The Digital Laboratory expands the capabilities of a single FPGA platform to this large-scale
platform, moving from a single FPGA system into multiple FPGA systems that can be used to
look into the future at the system level.

5.1. Infrastructure

As shown in Figure 25, the MEEP system consists of two racks: each one with 6 nodes, and each
node with 8 FPGAs. Each rack is fully connected to a switch (direct cabling from each node, but
also each of the 48 FPGAs). Then, the racks are connected to each other through the
interconnection of both switches.

Figure 25. MEEP FPGA cluster connectivity: 2 racks x 6 nodes x 8 Alveo-U55C boards.

D6.4 v1.1 35 / 83

Table 10 collects the information for one rack, the same applies for both racks.

Table 10. Large-scale FPGA machine details

Digital laboratory infrastructure details

Hardware components

Admin standard nodes

4
 Each one with:
 2x intel Xeon Gold 6330 28C 205W 2.0GHz Processor
 OS: RedHat Enterprise Centos 8.1

Compute nodes

12 (fpgan01:fpgan12)
 Each one with:
 2x Intel Xeon Gold 6330 28C 205W 2.0GHz Processor
 OS: RedHat Enterprise Centos 8.1
 8x FPGAs Xilinx Alveo U55C

100 Gb Ethernet Switch
SN4600C (64x100Gb)

2

USB Hub
12
 Each one with 10 ports

Hardware connectivity

PCIe host bridges
Connect each of the host nodes with its 8 corresponding
FPGAs

100Gb Ethernet switches
Each of the 96 FPGAs connected through QSFP0
Each of the 12 compute nodes
Each of the 8 Admin nodes

Direct FPGA to FPGA connection
(no switch)

(Only available in Rack1)
48 FPGAs in pairs through QSFP1 (inter-FPGA connectivity
per node)
 FPGA1 – FPGA2
 FPGA3 – FPGA4
 FPGA5 – FPGA6
 FPGA7 – FPGA8

USB Hubs (10 ports)
Connection per node:
 8 FPGAs per node
 The compute nodes

A partial view of the real system is shown in Figure 26, where only four nodes per rack are
visible. The image on the left corresponds to Rack1, and the one on the right shows Rack2.
There exist clear differences in the physical cabling between both racks. The 48 FPGA cards in
Rack1 have inter-FPGA connectivity via QSFP1 to the FPGA card adjacent to it. This creates a
paired grouping of QSFP1 P2P interconnectivity with any intermediate switch. In the case of
Rack2, FPGAs are not directly connected in pairs. This means that QSFP1 is unused for now.

D6.4 v1.1 36 / 83

Figure 26. Physical cabling of the large-scale FPGA machine racks. (Rack1-left, Rack2-right)

As Figure 27 depicts, QSFP0 is the top port on the FPGA card, and QSFP1 is the bottom port.
Regarding the cables, the black cables are copper QSFP DAC connections between QSFP0 on
the FPGA card and the cumulus 100GbE switch. Then, the point to point interlink
communication between adjacent FPGAs uses fiberoptic cables.

Figure 27. U55C FPGA position in the node

The third port in the FPGA, the USB connector; is used to connect an FPGA of a node to one USB
Hub port, by using the cable shown in Figure 28.

D6.4 v1.1 37 / 83

Figure 28. USB cables to connect an FPGA with the USB Hub

Even though initially the USB Hub shown in Figure 29 was installed, it has been finally replaced
by the one shown in Figure 30. A more basic hub model, with 10 ports instead of 16. Two
reasons motivated this replacement: 1) smaller dimension, and 2) no stockage issues. The new
USB Hub with only 10 ports fulfils the requirements per node, and it is possible to
accommodate 6 of those in a rack. The purpose of each of the hubs is facilitating FPGA
programmability using JTAG, but also getting output data through the UART.

Figure 29. USB HUB with 16 ports installed initially.

Figure 30. USB HUB with 10 ports finally installed

The assembly and physical installation of this system comprises the execution of several
activities, executed over several months. The overview of these activities is shown in Table 11.

Table 11. Assembly and Physical installation process

Activity Status end of MEEP

1) On-site machine assembly Completed (Lenovo)

2) Cabling and configuration
Full Rack1
Full Rack2

fpganode01, fpganode12

D6.4 v1.1 38 / 83

3) Network cabling

Full Rack1
Full Rack2

fpganode01, fpganode12
System connected to BSC

network

4) Electrical installation Completed

5) Machine OS and cluster
installation

Full Rack1
Full Rack2

6) FPGA SW requirements As per request

7) FPGA-to-FPGA
programmability

(QSFP+ and JTAG cabling to USB
Hubs)

Full Rack1
Full Rack2

8) Tests (Hardware basic checks)
Full Rack1
Full Rack2

Work done by Lenovo team
Work done by BSC team

The assembly and the physical installation took place on-site, at BSC facilities. The assembly of
all the modules was led by Lenovo team; whereas the rest of the activities relied on BSC team;
except for the electrical installation that required supervision from Lenovo. In any case, BSC
team has access to Lenovo support for all the issues related to the configuration and
installation of the machine.

Before facing the installation of the full system, BSC team worked on a small set of it, starting
from one node, and once it was stable, adding new nodes in an incremental fashion. This
brought the possibility of tunning and debugging the installation, but also adapting the setup
accordingly.

5.2. Configuration and setup

The MEEP system configuration and setup has been incrementally implemented, starting with
one node, and scaling up to multiple nodes after ensuring functionality and correctness on the
small environment.

5.2.1 Basic configuration and setup

Before getting the large-scale FPGA machine accessible to any user, a basic setup was required:

 Preparation of an operating system image and corresponding packages (according to
Lenovo indications).

 Installation of some packages and tools required by Operations team for monitoring,
managing, and guaranteeing good levels of security.

 Connecting the large-scale machine to the BSC LAN using GBIC cables, to simplify
networking and software installation activities.

These previous activities are common to most of the systems under Operation team at BSC,
since they are executed on the host. The novelty for the teams comes from the fact of having to
handle 96 FPGAs, new devices for the Operations team. To deal with the associated complexity,

D6.4 v1.1 39 / 83

they were supported by the BSC FPGA developers all team. The working methodology was
based on an iterative and incremental learning process consisting of testing, understanding,
replicating, validating, and, in the end, automating. The first stage was a completely manual
process working on a single node.

From an operational perspective, MEEP system was structured into five different types of
nodes, according to their purpose: 1) login, 2) host, 3) head, 4) compute, and 5) FPGA nodes.
More details are in Table 12.

Table 12. Type of nodes as part of the large-scale FPGA machine

Type of node Amount Tag Accessibility
Login node 1 fpgalogin1 only Operations

Virtual Machine host
node

1
VM/FPGA
(96 in total)

fpgavmhost<node>f<card>
<node> [01:12]
<card> [01:08]

Operations
Users

Head nodes 2 fpgahead<1,2> only Operations

Compute nodes 4 fpgac[01:04]
Operations
Users

FPGA Host nodes 12 fpgan[01:12] only Operations

1) Login node: it is used to get access to the FPGA cluster and being able to operate with one
or several FPGA cards.

2) VM host node: it is a node that creates a Virtual Machine (VM) instance for each of the
FPGAs of the cluster to allow users access to operate with a specific FPGA without interfere
with other users.

3) Head node: There is one head node per Rack, which allows to control overall operation of
a rack, and it is only accessible by Operations.

4) Compute node: These are general compute nodes, with no FPGAs associated.
5) FPGA node: Each of these nodes has 8 FPGAs connected to it. The control of the node is

under Operations, although working together with the FPGA team, they are allowing
certain privileges to users by adding commands to a sudo list.

Regarding the specific software packages required for guaranteeing a basic functionality of the
system, the following ones were installed:

 Xilinx Vivado 2023.1
 Xilinx Vitis development environment 2021.2 and 2022.1 (FPGA login node)
 Xilinx XRT environment 2023.1 (FPGA nodes)
 UART clients picocom, microcom (FPGA nodes)
 Software development tools for OmpSs and others (clang, boost-1.66, ninja, lld, hwloc,

numactl, gcc-10, gfortran)

 Gitlab-runner for CICD flow

 Slurm and Slurm X11

The last one is not specific to FPGAs, but for SLURM installation. Although SLURM was not
configured from the beginning, Operations team installed all the packages required, based on
their experience to progress on the configuration of the system.

The above scenarios are currently in use (in part) at the FPGA cluster by several BSC projects
(e.g., MEEP, EPI, OmpSs). All projects actively utilize all depicted interfaces (PCIe, Ethernet-
over-QSFP, UART, JTAG), thus confirming their proper hardware and software configurations.

D6.4 v1.1 40 / 83

Xilinx Vitis environment

The part of standard Alveo packages for the U55C board from AMD Xilinx version 2023.1
responsible for Vitis runtime environment are installed at each of the compute nodes. Besides
PCIe drivers providing Vitis based runtime flow (xocl OS kernel module) and card management
(xclmgmt OS kernel module) the packages contain flashable partitions for the cards:

 PCIe XDMA based Xilinx Platform xilinx_u55c_gen3x16_xdma_base_3 for programming
to FPGA after cold reboot and providing Vitis based flow from FPGA side.

 Satellite Controller firmware version 7.1.22 providing management and monitoring of
on-board hardware.

Both of the above partitions were flashed to all 96 FPGA boards in order to support standard
Xilinx Vitis runtime flow and support hardware management/monitoring through the Satellite
Controller.

5.2.2. Advanced configuration and setup

Based on Operations and FPGA team requirements for the envisioned functionality of the
MEEP system, as digital laboratory, a more advanced configuration was implemented.

One of the most complex activities has been configuring the PCIe. A very important peripheral
for establishing proper communication between the host node and each of the FPGA cards. The
complexity relied on two aspects: 1) identifying the physical PCIe port mapping, and 2)
adapting the drivers to the needs of present and future users. The former, physical mapping
had also two levels: 1) understanding and clearly identifying the mapping between the
physical chassis port and the PCIe port slot (Figure 31); and then 2) associating the PCIe and
FPGA port mapping (Figure 32).

Figure 31. Mapping chassis example

D6.4 v1.1 41 / 83

Figure 32. PCIe – FPGA mapping example

At functionality level, another challenge was to adapt the PCIe drivers to two different users’s
requirements, and then at system configuration level being able to make them compatible. In
this sense, the FPGA team used two different working scenarios: one operating with xdma
drivers, and another with qdma drivers. More details are included in Table 13.

Table 13. More configuration details.

PCIe Drivers

PCI Drivers:
 xocl (PCIe User Physical Function) Driver Interfaces
 xclmgmt (PCIe Management Physical Function) Driver Interfaces

QDMA:
 BSC ONIC version (Ethernet over PCI)

XDMA:
 BSC version

UART and USB:
 Picocom (UART client)

Other software packages installed

Installed several software packages:
 OmpSs toolchain (boost, boost-devel, hwloc-devel, numactl-devel)
 gcc and g++
 ninja, clang and lld
 gfortran
 More under user’s demand

Complementary to the information above, udev rules were introduced to allow user access to
different devices (DMA, PCIe, and USB).

D6.4 v1.1 42 / 83

Figure 33. Installed packages on FPGA nodes

An overview of all the packages installed in all FPGA nodes (fpgan[01:12]) is shown in Figure
33.

Custom requirements

Besides the standard Vitis flow, the most basic use case for an FPGA cluster is to use custom
bitstreams from scratch, which means having to complete the FPGA programming step. These
custom bitstreams intend to have one of two basic options of PCIe configuration: QDMA (used
in MEEP project) and XDMA (used in EPI project). Accordingly on the host side two kinds of
PCIe drivers should be used to interact with custom bitstreams. For both of them the QDMA
and XDMA drivers provided by Xilinx are taken as reference:
https://github.com/Xilinx/dma_ip_drivers.

5.2.3. Networking and usability

Figure 34 shows the networking structure of the MEEP system, and the interaction among its
different elements. The figure below represents a schematic of the envisioned final system; in
which users connect to the BSC LAN and access to any of the resources of the machine via
Slurm. The elements shown in the figure correspond to the ones described in Table 12.

D6.4 v1.1 43 / 83

Figure 34. General schematic of the network designs and interactions

There are specific elements only accessible to Operations (yellow boxes{fpgan[01:12],
fpgavmhost01}), and others to final users (orange boxes {fpgalogin, fpgac[01:04],
fpgavm[01:12]f[01:08]}).

The flow is as follows:

 The large-scale FPGA machine is connected to the BSC LAN network (blue cloud:
Eth:large-scale FPGA machine).

 As part of the system, Operations team has:
o A host node (fpgavmhost) to control the status of each of the FPGA cards of the

system, and it also allows sysadmin operations through the network.
o 12 FPGA nodes to control each of the nodes to which users can operate.

A user connects to the machine through the fpgalogin node via ssh, allocating resources for
his operation and configuring his requirements via Slurm. The system will assign him the
requested resources, if there are any available, after configuring the resources. This process
implies creating a VM per each of the resources requested (fpgavm<node>f<fpga>).

Sysadmin responsibilities: Operations team

Operations team manages the infrastructure (management, maintenance, support, and
software installation). The team is responsible for:

 Creating a generic operator in the fpgan[01:12] for allowing users to access.
o Operation manages the sudo requirements.
o Operation develops scripts to manage FPGA tasks.

 Developing the prologue and epilog of Slurm; trying to include all common tasks and
needs as part of the root definition.

 Enabling basic functionalities for users. In this sense, for those operatives that need to
be done by the user, the team will develop:

o Stub script with setgid to some special group that has access to ssh private
key of operator.

D6.4 v1.1 44 / 83

o The stub script will ssh to the associated fpgan[01:12] node and perform a
specific action only to its FPGA.

Machine operative: User level

Figure 35 represents the first scenario that was enabled to allow to the FPGA team accessing
to the system. In the first stage, only one node (fpgan01) was configured, and direct access to
each of the FPGAs was permitted via ssh; with no slum intervention. This facilitated that
several users could execute small experiments simultaneously on specific FPGAs within the
same node.

To facilitate users the possibility of transferring files from/to external repositories to/from the
machine, two different NFS servers were configured: 1) One for the hosts (fpgalogin &
fpgan[01:12]), and 2) one for the FPGAs. The relationship among them is shown in Figure 34.

Figure 35. User interactions and features in Rack1, FPGA node 01

For security reasons there is not any bridge between NFS systems (hosts, and FPGAs). That
means that users must do a secure copy (scp) of files into the FPGA to operate with them.

A welcome message is shown in the terminal when a user login in the machine (Figure 36).
Then, to do automation, the mapping of different FPGA interfaces (PCIe slot, USB UART, USB
JTAG, Ethernet IP) to each other is required. The mapping per node is collected in a special file
found in the path: /etc/motd that might be checked after login. Figure 37 shows an example of
the FPGA interconnection mapping, for the FPGA node 03 (fpgan03).

D6.4 v1.1 45 / 83

Figure 36. Welcome message when login in MEEP system

This table below includes the information for each of the FPGAs of the node. First column
indicates each of the cards (fpgan03f[01:08]), the chassis PCIe port (Chassis), the serial number
that identifies univocally each card (FPGA serial), the MAC address for the PCIe bus (PCIe Bus),
the port assigned to the in the USB Hub (USBPort), link to use the UART (ttyUSBx), and the rest
of the columns are related to networking information. All FPGA cards are connected to the
100GbE switch by using the QSPF0 (QSFP0), directly connected to its immediate neighboring
FPGA using the QSFP1 (this is only true in Rack1) (QSFP1), and last two columns are related to
the PCIe using ONIC driver. QDMA onic column identifies univocally the PCIe to allow
communication between the FPGA and its corresponding host; whereas the last column (onic
IP) refers to the MAC address for enabling Ethernet over PCIe.

Figure 37. FPGA card interconnection mapping

D6.4 v1.1 46 / 83

5.2.4. SLURM configuration

Once the first working nodes were stable, in terms of configuration, Operations team
configured those to be accessed via SLURM. That process required the configuration of the
prolog and epilog files to define what kind of actions need to be done when one user request
resources, as it is depicted in Figure 38.

Figure 38. Generic SLURM workflow

SLURM constraints

Until now, and based on our experience, there are two main constraints that need to be
considered when a user wants to use the large-scale FPGA system:

 Ethernet link speed (eth:{auto, 10g, 100g})
o Configures all switch ports of the FPGAs in the node to the given speed.
o Please note that ALL cards have to be configured to the given Ethernet speed.

 DMA driver: (dma{none, xdma, qdma})
o Loads the given kernel module.

These constraints might be used separately or together, depending on users’ needs. An
example of this is shown in Figure 39. Constraints are given as a comma separated list with the
--constraint flag at the beginning of the jobscript. Examples below:

One constraint: Ethernet at 10GbE
--constraint=eth:10g

One constraint: qdma driver
--constraint=dmaqdma

Two constraints: Ethernet at 100GbE and qdma driver
--constraint=eth:100g,dma=dmaqdma

Figure 39. Constraints setup

Each combination of key-value pair of constraints must be included in the slurm.conf file:

NodeName=fpgan-[01-12]
Features=eth:10g,eth:100g,dma:none,dma:xdma,dma:qdma

D6.4 v1.1 47 / 83

Users can only include valid job constraints, otherwise the system will show an error message
as a response:

$ salloc -N 1 -t 1-00:00 --constraint=dma:custom_driver
salloc: error: Job submit/allocate failed: Invalid feature specification

If there are conflicting constraints in the same job submission only the latest applies. For
example, --constraint=dma:none,dma:dmaxdma will set up the XDMA driver.
There is still one open ticket support with Lenovo, related to the reset of the FPGA to move the
FPGA to an idle state without forcing a node reboot every time a new user is going to use it.
This action will be included as part of the SLURM epilog.

Use case 1: One developer per node

Developers can reprogram the FPGAs with whatever bitstream they want and talk to the
boards either via PCIe and/or UART. This use case is the same as the environment that was
used for running the bring-up, but with two major differences:

1) Only one user is in the node at the same time and accesses via SLURM.
2) Users cannot load/unload kernel modules, they request the DMA driver as a job

constraint. This removes the need for sudo on certain scripts.

5.2.5. Infrastructure as a service (usability)

As shown in Figure 38, the MEEP system has been configured to allow a flexible use from the
users’ perspective. With the current configuration, a user might use the infrastructure to
implement one of the three following scenarios:

 Single FPGA design (regular accelerators/SDV/silicon prototyping)
 Multiple concurrent FPGA designs (several hardware kernels synthesized and

managed by OmpSs/AIT)
 Multi-FPGA designs (scaled-up above cases)

From the design perspective, the MEEP infrastructure envisions supporting any of the
scenarios depicted in Figure 40. Two of the three have been tested as part of the bring-up
process. More specifically, designs with one FPGA and multiple FPGAs, with one design per
FPGA, have been tested. The third scenario has not been tested because we do not have any
design with that capability or need yet.

D6.4 v1.1 48 / 83

Figure 40. Design configurations allowed in MEEP system

It is important to mention that there are not direct cables connected among all the FPGAs to
support all topologies. However, those could be implemented though the ethernet switch.

5.2.6. Configuration progress and status

Regarding the infrastructure, as it is shown in Figure 41 all nodes are accessible via SLURM.
The image depicts an specific moment in which the first FPGA nodes (fpgan[01-02]) are not
available (rebooting process), the next two FPGA nodes are being used (fpgan[03-04]), the
rest of them are idle (fpgan[05-12]).

Figure 41. Slurm partitions (one per node)

A more detailed description of the user access hierarchy is represented in Figure 42, although
the image only shows Rack1. However, this is the same for Rack2, except for the point-to-point
communication of pairs of FPGAs using QSFP1; which is only available in Rack1 for the
moment. A user accesses the compute node with 8 FPGA cards through two level ssh: 1) access
to the login node, and 2) access to the FPGA node. The access is enabled and controlled by
SLURM. All nodes share a common NFS. Gitlab access and SLURM control are available at the
first-stage FPGA login node. In addition, Table 14 summarizes the current features enabled for
a user when using SLURM.

D6.4 v1.1 49 / 83

Figure 42. Hierarchy of user access to FPGA nodes in Rack1

Table 14. Summary of user features

Feature Comment

❌ Load/Unload kernel modules Done in the SLURM prolog

✅ R/W permissions to ttyUSB devices Already implemented with udev rules

✅ R/W permissions to PCIe remove and rescan files Already implemented with udev rules

✅ R/W permissions to /dev/xdma* Already implemented with udev rules

✅ Any bitstream can be programmed Same as today
The wrong bitstream could break the node

5.3 Capabilities and bring-up

The bring-up step requires validating the correct behavior of the whole infrastructure, and all
its individual components (nodes, switches, processors and FPGAs). This step must guarantee
access to the infrastructure for its future exploitation by the users and check all the necessary
tools are available to ensure the appropriate usability of the resources. An acceptance process
has been prepared for this purpose. More details on the status of the acceptance are in Table
15.

D6.4 v1.1 50 / 83

Table 15. Checklist with experiments to be included as part of the bring-up

Acceptance tests Status

Checking components

All nodes (hosts) are alive and reachable:
Rack1: [fpganode01:fpganode06]
Rack2: [fpganode07:fpganode12]

All switches are alive and reachable
Rack1: fpgaibsw1
Rack2: fpgaibsw2

All FPGAs are alive and visible (xbtest / xbutils)
fpganode01|f01:f08 – fpganode12|f01:f08

Checking FPGA programmability

All FPGAs programmability using JTAG
fpganode01|f01:f08 – fpganode12|f01:f08

All FPGAs serial output using UART
fpganode01|f01:f08 – fpganode12|f01:f08

Checking FPGA connectivity (Ethernet and FPGA-to-FPGA)

Point-to-point communication using direct QSFP links (cabling) (ibert) -

Point-to-point communication using Ethernet over QSFP1 between FPGAs in the same
node (Only Rack1)

Rack1: fpganode01:06|f01-f02
f03-f04
f05-f06
f07-f08

FPGA-to-FPGA communication through the switch using Ethernet over QSFP0
between FPGAs in the same or different nodes, but same rack

FPGA-to-FPGA communication through the switch using Ethernet over QSFP0
between FPGAs in different racks

FPGA-to-FPGA communication using Aurora over QSFP1 between FPGAs in the same
node (Only Rack1)

Host-to-FPGA and FPGA-to-host communication using PCIe (no Ethernet)

Host-to-FPGA and FPGA-to-host communication using Ethernet over PCIe

Checking toolchain, software and EDA tools

Access to EDA tools

Loading a bitstream with a functional design and booting Linux (OpenSBI)

Configuring several FPGAs with the same bitstream

SLURM installation, configuration and exploitation at user level

CICD flow from Gitlab repo to large-scale FPGA machine (Optional)*

D6.4 v1.1 51 / 83

RISC-V toolchain compatibility (Optional) -

SW toolset installation, compatibility, and correctness (OpenMP, MPI) (Optional) -

The list of tests has been organized into four main categories, where the three first are the
most relevant for ensuring the correctness of all hardware components and the possibility of
using those for MEEP and future projects:

1) Checking components: The goal of this set of tests is to verify the correctness of each of the
hardware components of the system: cabling, nodes, power supply, cooling, switches, and
FPGA cards.

2) Checking FPGA programmability: These tests aim for ensuring the possibility of using the
FPGA cards by being able to: a) load a bitstream via JTAG, and b) reading serial outputs of
the tasks executed on the FPGA using the UART. In the end, all these tests guarantee the
correct behavior and configuration of the USB Hubs.

3) Checking FPGA connectivity: Ensuring the networking capabilities of the system is
necessary to offer the targeted services to be offered by the large-scale FPGA system. Thus,
validating the networking inter and intra nodes (from/to the FPGAs) is mandatory. This
includes: PCIe FPGA, FPGAFPGA via QSFP1, and through the switch (no matter if
the FPGAs are in the same node, in the same Rack but different node, or in different Racks.

4) Checking toolchain, software, and EDA tools: Most of these tests are optional for the bring-
up process. However, they have been considered to start testing, and evolving our tools to
deal with the complexity of a large-scale system as this.

Some tests that have been removed from the list for the following reasons:

 Point-to-point communication using direct QSFP links (cabling) (ibert): The networking
tests were much more exhaustive than this one, and consequently we decided to avoid
redundancies and simplify the experiments to the most sophisticated ones.

 RISC-V toolchain compatibility & SW toolset installation, compatibility, and correctness
(OpenMP, MPI): both tests were set as Optional since they are not mandatory for the
bring-up. These are the kind of checks that are nice to test to demonstrate some of the
functionalities of the system as software development vehicle. In this sense, these tests
will be run soon.

In the case of the CICD flow from Gitlab repo to large-scale FPGA machine test, BSC team
developed initial tests to check the possibility of pointing to the large-scale FPGA machine as
target where to deploy a bitstream generated through the FPGA flow. The mechanism was
validated, although not put in production yet.

5.3.1. Xilinx tests

The hardware validation of all FPGAs cards has been done using some of the tools provided by
the vendors (AMD/Xilinx) for this purpose; more specifically: xbutils and xbtest. These consist
of running a set of tests in all FPGA cards to check their correct status.

1) xbutils provides basic validation for all the U55C FPGA cards connected to one PCIe
node.

D6.4 v1.1 52 / 83

2) xbtest: provides more advanced tests and validates the host server environment under
a variety of stress conditions. The application monitors the system and validates the
functionality of essential hardware and software components of the platform.

Once both racks (Rack1 and Rack2) were fully connected (cabling and networking) and
configured, it was required to do a firmware (FW) upgrade. The FW implements the logic to
interface the Satellite Controller (SC), and the SC itself. A mechanism that permits the
measurements. Figure 43 shows the output of all FPGAs of the large-scale machine (96 FPGAs)
after running a firmware upgrade validation testing using xbutil (FW version 2023.1).

Figure 43. Firmware upgrade and validation testing, in all FPGAs, using xbutil

The output shows each of the cards of the system per node, starting from FPGA node 01
(fpgan01) (Figure 43, left column), going through each of the eight FPGA cards, to the last FPGA
card of FPGA node 12 (fpgan12) (Figure 43, right column).

D6.4 v1.1 53 / 83

Figure 44. Firmware upgrade and validation testing detail on fpgan01

Figure 44 depicts a detailed output of the validation tests executed (Test 1 to Test 7) in one
particular node, in this case fpgan01.

After a FW update, a cold reboot is needed to guarantee the new changes have been applied to
the system. Then, the following commands are useful to validate the process: 1) xbmgmt
examine, and 2) xbutils examine. Having Xilinx Platform programmed to FPGAs after cold
reboot xbmgmt and xbutil utilities report all 8 FPGA cards as 2 PCIe devices per each (Figures
45 and 46). These results validate a successful FW update.

Figure 45. Output of xbmgmt examine command on fpganode09.

Figure 46. Output of xbutil examine command on fpganode09.

D6.4 v1.1 54 / 83

Some more details about Xilinx Platform and about the last loaded validation kernel
(bandwidth.xclbin) for a particular card at PCIe slot 1 are provided by xbutil examine -d
000:34:00.1 in Figure 47.

Figure 47. Output of xbutil examine for a particular FPGA card at PCIe slot 1 on fpganode09

Xilinx Platform allows users to run validation tests for a particular FPGA card by xbutil
validate command (Figure 48). This is performed through loading to the FPGA dedicated
hardware kernels, which run a set of basic health tests. Such validation procedure has been
successfully run for all 96 FPGA cards of the FPGA cluster (Test 1 to Test 12).

D6.4 v1.1 55 / 83

Figure 48. xbutils validate of FPGA card in PCIe slot 1 in fpganode09.

In Figure 49 default (post cold reboot) configurations of PCIe for cards in slots 3 and 4 are
presented with activated two types of PCIe drivers coming with default XRT distribution: xocl
(OpenCL for Vitis hardware kernels) and xclmgmt (FPGA card management).

D6.4 v1.1 56 / 83

Figure 49. Post cold reboot PCIe configurations for FPGA cards at PCIe slots 3 and 4.

5.3.2. Custom tests

Vendor tests guarantee the correctness of the FPGA cards of the system. But it is still pending
to validate the basic functionality of the system, which is critical for ensuring the possibility of
using the machine for the targeted functionalities: 1) being used as a pre-silicon validation
platform for hardware developers, and 2) being used as a software development vehicle for
software developers. The correctness of the basic features for succeeding on these
functionalities have been validated by executing the BSC custom tests summarized in Table 16.

Table 16. Summary of BSC custom tests

 List of BSC custom tests

Basic FPGA card peripherals

 Access to local BSC repositories (in Gitlab)
 USB Hub connection

o JTAG programming,
o UART access,

 PCIe
o QDMA tests,
o XDMA tests,

 Bitstream deployment

Node Behavior

D6.4 v1.1 57 / 83

 Programming several times, the same FPGA, with different bitstreams
o RISC-V accelerators mapping (SpAcc prototype, EPI@SDV prototype)
o Networking tests

 Booting Linux (OpenSBI)
 RISC-V based (FPGA card – FPGA node (Host) communication through PCIe)

o FPGA – host (no Ethernet)
o FPGA – host (Ethernet over PCie)

Networking

 Point to point communication (cabling using QSFP1)
o Ethernet tests with 100GbE point-to-point
o Ethernet tests with 100GbE via switch

 The first set of tests, Basic FPGA card peripherals, are intended to check the
functionality of basic I/O peripherals required for programming, establishing basic
communication between the FPGA and host node, and checking output results using
the UART. All these tests have required an intense development of BSC tools4 to allow
mapping automation for the following tasks over specific FPGA cards (FPGA card #):

o Programming (fpgajtag). Allows programming an FPGA via JTAG.
o QDMA actions (pcienum). Used for executing actions such as: remove, qmax,

add, dma-ctl.
o USB UART (/dev/ttyusb). Its function is to enable the UART communication

using a specific USB port.
o Ethernet over PCIe: Allows activating Ethernet over PCIe.

 The second set of tests, Node behavior, were intended to ensure that different designs
could be deployed on the large-scale FPGA system without any difficulty. In this case
two different accelerator designs were used: 1) ACME accelerator from MEEP project5,
and 2) the SDV design from EPI project6.

o In any of the cases, FPGA users were able to execute the following sequence of
instructions, as it is shown in Figure 50:

 Program an FPGA in fpgan01
 Rescan PCIe devices.
 Check PCIe devices.
 Set a device with the proper drivers.
 Offload Linux kernel to the FPGA.
 Send start signal to the RISC-V core in the FPGA.

 Observe Linux booting via UART (ttyUSB7)

4 Gitlab fpga-tools repository: https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/fpga-tools/-
/tree/develop/fpga_cluster
5 MEEP Project: www.meep-project.eu
6 EPI project: www.european-processor-initiative.eu

D6.4 v1.1 58 / 83

Figure 50. Linux Booting of a RISC-V based design on fpgan01

Moreover, the team has enabled several interesting features to exploit the system:

 ONIC driver: is being improved to add extra features like enabling Ethernet over PCIe
from one node to multiple FPGAs, as part of the same node.

 Coexistence of QDMA and XDMA drivers in the same node.
 Coexistence of 10GbE and 100GbE Ethernet throughputs in the same node. This

characteristic makes possible to have different FPGAs in the same node with the switch
configured in a different way; some FPGAs at 10Gb, and others at 100Gb.

In case when custom bitstreams are programmed, accordingly a custom QDMA or XDMA host
driver is activated to support PCIe functioning. In Figure 51 the changed PCIe configuration is
presented for card at slot 3 after programming QDMA based custom bitstream with activation
of custom qdma-pf.ko kernel module.

D6.4 v1.1 59 / 83

Figure 51. Changed PCIe configurations for FPGA cards at PCIe slot 3 after its programming with
custom bitstream and activation of custom PCIe QDMA driver.

Experimentally it has been checked that different types of PCIe drivers may coexist
simultaneously with each other, and a user is able to reprogram different FPGA cards with
bitstreams having arbitrary PCIe configurations. But generally, after such reprogramming a
user is required to do a hot reboot of the host (FPGA state is kept untouched in that case) in
order the OS can do PCIe bus enumeration and device address assignment. During such a
procedure the OS extracts corresponding information from the Base Address Register (BAR)
per each PCIe device. Configuration of BAR(s) is a part of PCIe IP configuration while
implementing a bitstream.

An option to avoid a host reboot is to make the PCIe device remove/rescan operations7. This
option is chosen as the basic one for FPGA cluster usage. But it assumes previously done
preallocation of resources on a specific PCIe port during PCIe enumeration. Even more, this
preallocation should satisfy the rule that it is done with BAR address space not less than BAR(s)
in further reprogrammed custom bitstreams. In most cases Xilinx Platform bitstreams
initialized after cold reboot satisfy this rule, but in order to have less restrictions for custom
bitstreams, a special bitstream having big enough BAR configuration 512 MB is created and is
planned to be programmed to FPGAs before rare cases of FPGA cluster node reboot.
In order to do automation the mapping of different FPGA interfaces (PCIe slot, USB UART, USB
JTAG, Ethernet IP) to each other is required. The mapping is collected in special file /etc/motd
per a node showed at initial login, as depicted in Figure 52:

7 https://stackoverflow.com/questions/32334870/how-to-do-a-true-rescan-of-pcie-bus

D6.4 v1.1 60 / 83

Figure 52. FPGA card interconnection mappings.

Further this mapping is used in automation scripts for FPGA programming, interactions with
FPGA through PCIe, commands in UART terminal, Ethernet IP assignments.

In addition, an experimental python script (env.py) provides several functions to help on the
operation and testing of the cluster. It can be executed with an interactive python console
(python3 -i env.py). We list the main functions of the script below.

The fpga_dashboard function lists the details of all the FPGA accelerators connected to the
node. It outputs details of the used PCIe slots, the physical and logical USB connections, the
kernel drivers used to interact with the boards, the tty interface to interact with the
accelerators’ UART, the FPGA serial numbers, and details about the Ethernet-over-PCIe
interfaces. Below you can see an example output of the function.

 >>>fpga_dashboard()

| FPGA | PCI | Board | kernel Driver | Phy. USB | Log. USB | tty | Serial | qx | onic |
+------+-------+-------+-----------------+----------+----------+----------+--------------+----+------------------+
0	34:00	u55c	qdma-pf	1-6.5	1-10	ttyUSB22	XFL1VYH4S0UR	0	onic52s0f0 [··]
1	33:00	u55c	qdma-pf	1-6.6	1-11	ttyUSB26	XFL1DF0P10SS	0	onic51s0f0 [··]
2	19:00	u55c	qdma-pf	1-6.7	1-12	ttyUSB30	XFL1KEQBL4IM	0	onic25s0f0 [··]
3	1A:00	u55c	qdma-pf	1-6.4	1-8	ttyUSB14	XFL105L3VVVU	0	onic26s0f0 [··]
4	CD:00	u55c	qdma-pf	1-6.3	1-6	ttyUSB6	XFL1BZIEUP0P	0	onic205s0f0 [··]
5	CC:00	u55c	qdma-pf	1-6.2	1-5	ttyUSB2	XFL1L43EGBAE	0	onic204s0f0 [··]
6	B3:00	u55c	qdma-pf	1-6.1.4	1-9	ttyUSB18	XFL1QTI2Z0CV	2	onic179s0f0 [UP]
7	B4:00	u55c	qdma-pf	1-6.1.3	1-7	ttyUSB10	XFL1RIVW202O	2	onic180s0f0 [UP]

Some of the information listed is statically written in the script and it is obtained in a
configuration step that requires scanning the system to collect all the details. To assist this
manual process, we also provide a function scan_new_node that scans and collects relevant
information of the PCIe/USB/UART/and kernel information. Below you can see an example
output of the function.

D6.4 v1.1 61 / 83

>>> scan_new_node()
Checking FPGA serials
Hostname: fpgan01
FPGA serials
['XFL1KEQBL4IM', 'XFL1DF0P10SS', 'XFL1VYH4S0UR', 'XFL105L3VVVU', 'XFL1BZIEUP0P', 'XFL1L43EGBAE', 'XFL1QTI2Z0CV',
'XFL1RIVW202O']
Add the following line to fpga_serial variable:
'fpgan01':['XFL1KEQBL4IM', 'XFL1DF0P10SS', 'XFL1VYH4S0UR', 'XFL105L3VVVU', 'XFL1BZIEUP0P', 'XFL1L43EGBAE',
'XFL1QTI2Z0CV', 'XFL1RIVW202O']
Checking PCI slots
...by now PCI slots are hardcoded
Checking USB cables
{(1, 11): '1-6.6', (1, 8): '1-6.4', (1, 1): 'usb1', (1, 5): '1-6.2', (1, 9): '1-6.1.4', (1, 2): '1-1', (1, 12): '1-6.7',
(1, 10): '1-6.5', (2, 1): 'usb2', (1, 6): '1-6.3', (1, 3): '1-6', (1, 4): '1-6.1', (1, 7): '1-6.1.3'}
Add the following line to usb_ports
'fpgan01':['1-6.7', '1-6.6', '1-6.5', '1-6.4', '1-6.3', '1-6.2', '1-6.1.4', '1-6.1.3']

After identifying the hardware, the user typically executes a sequence of operations to bring
up a running SDV system in any of the FPGA accelerators. First, a bitstream with the hardware
design must be programmed into the FPGA. This can be done with the vivado_download
function.

Once the SDV is configured in the FPGA accelerator, the user needs to set up the QDMA
channels to be able to communicate with the SDV. This is done by the create_qdma_queues
function.

Depending on the operating system to run on the SDV (either Buildroot or Fedora), different
steps are needed. Buildroot is simpler, it only requires placing the binary image that combines
OpenSBI, Linux Kernel, and Buildroot distribution in the main memory of the system before
issuing a reset of the processor to start the booting process. This can be done with the
boot_buildroot function. On the other hand, Fedora is slightly more complex as it requires
using an additional persistent memory file-system that is placed into an reserved area of the
HBM memory. The file-system can be downloaded with the download_fedora function. Then,
the download of the image containing the OpenSBI and the Linux kernel, and a reset to the
processor to start the booting process can be performed with the boot_fedora function.

Once the SDV processor is started it is interesting to analyze the boot log messages that are
outputted through the UART interface. A serial terminal connection with the SDV can be
established with the picocom function, which calls the picocom Linux application.

Some additional functions are provided to help with the configuration of the SDV parameters.
For instance, the init_eop_by_uart function is used to configure the details (MAC and IP
address) of the Ethernet-over-PCI device of the SDV. Similarly, the init_qsfp_by_uart
function is used to configure the details (MAC and IP address and routing) of the Gigabit QSFP
Ethernet interface.

5.4. Use Cases

5.4.1. b8c SpMV accelerator

Sparse-matrix dense-vector multiplication (SpMV), computing 𝑦 = 𝐴 × 𝑥 where y and x are
vectors and A is a sparse matrix, is a key kernel in many scientific applications. However, when
using the de-facto sparse matrix representation (CSR), and for reasonably large problems, the
random access pattern on x accesses penalizes performance due to the high number of cache
misses generated by this sparse behavior. Under these circumstances, FPGAs and their ability
to generate ad-hoc memory hierarchies for specific problem types arise as an interesting
alternative to accelerate SpMV computations.

D6.4 v1.1 62 / 83

This section describes a real use-case of the MEEP FPGA-Cluster in order to achieve that goal.
The starting point is a single FPGA design including multiple hardware kernels that
implements an fpga-optimized version of SpMV. These kernels have been synthesized using
AIT and, at run-time, are managed by OmpSs@FPGA.

This SpMV implementation, developed under the MEEP project and named b8c (block-8-
compress), is specially tailored for FPGAs. It makes use of different techniques to implement
parallel memory access in all the memory data involved in the computation: x, y and A.

Figure 53. Example of a matrix representation in both CSR and b8c.

To be able to do so, b8c transforms the original matrix and replaces its CSR representation by
its own, b8c representation. This b8c representation relies on the “compression” of the original
matrix in order to generate a more dense representation. The “compression” is performed on
a block basis: the original matrix is divided in blocks (or tiles) of 𝑁 × 𝑀 (rows/columns)
elements, where N and M are determined by the capacity of on-chip memory assigned to each
kernel instance to store x and y segments. Each block is further subdivided into 8-column
slices. Then, each slice is processed to “compress” it. The compression algorithm tries to merge
as many slice rows as possible, creating a new structure named super-row. A super-row, then,
is a set of 8 contiguous elements in the same slice. There are three conditions to be able to
merge a slice row into an already generated super-row:

1. They must be at a distance less or equal than a parameter “d” that is determined by the
number of bits configured to be able to store this information.

2. They must “belong” to y positions that do not clash modulo “a”, being “a”, again, a
configuration parameter that indicates how many row-accumulations can be
performed in parallel. The only exception to this is that both (the slice row and the
super-row update the same y position).

3. They must not have any common x index.

For a slice row, it can be merged with any already generated super-row given that the three
previous conditions are met. If they are not met, the slice row constitutes its own super-row,
which will be available to try to merge additional slice rows into it.

D6.4 v1.1 63 / 83

Figure 53 depicts a simple example of a matrix transformed from its CSR representation into
a b8c representation. As can be observed, the b8c structure includes additional meta-data
needed to identify the original row/column of each element in the new super-row structure.

Once transformed into this b8c format, the matrix can be processed using the b8c accelerators
leveraging all of the representation characteristics that, fruit of a co-design process, are
tailored for its own hardware architecture. Figure 54 shows a simplified scheme of a b8c
hardware accelerator. Given a (sub)matrix (or block) represented in b8c format, this
accelerator can process in the following sequence:

Preload x (source vector) values into local memory (on-chip memory)

Preload y (destination vector) values into local memory

Stream-process A (matrix) values (in its super-row form) directly from off-chip memory
(DDR/HBM)

i) For each super-row:
1) Read the corresponding x values
2) Perform partial products (𝐴 × 𝑥)
3) Group/accumulate partial products that update the same row
4) Update y with the result of the previous step

ii) Update y values on off-chip memory
Steps a, b and c can be skipped if the same accelerator already has the information needed (a,b)
or will use the same information to process the next block (c).

Figure 54. b8c accelerator hardware scheme.

The on-chip memory that stores x and y in the accelerator is partitioned in a cyclic fashion
using the same parameters as the b8c encoding of the matrix. In this way, up to 8 x values can
be read in parallel without collision and up to “a” (usually 4 or 8) values of y can be
read/updated in parallel. The accelerator is fully pipelined and thus, it is able to process one
super-row per cycle without stalling. This translates to a peak performance, according to SpMV
arithmetic, of 16 FLOPS per cycle.

D6.4 v1.1 64 / 83

The FPGA design of this accelerator, including 16 b8c SpMV kernels, can be deployed in the
MEEP cluster leveraging the mechanisms described previously. In single-accelerator mode, a
single FPGA is used to process any given matrix. In multiple-accelerator mode, a set of FPGAs
can be allocated and loaded with the same bitstream containing the SpMV b8c kernels. This set
of FPGAs, then, can be used to process each one, a sub-matrix of the original matrix, allowing
multi-FPGA b8c SpMV computations.

5.4.2. FPGA and ACME designs: Proof of concept

In addition to the bring-up tests, where different MEEP designs were used (Table 17), this
section describes how MEEP system has been used to put together all MEEP project
developments from WP4, WP5 and WP6.

To demonstrate the achievements of the project different tests have been executed, using as a
baseline the execution environment shown in Figure 55.

Figure 55 Execution environment in the MEEP system

All the tests have been executed programming all the FPGAs with one of the released
bitstreams: ACME EA 4H2V. This bitstream includes the ACME accelerator (Lagarto Hun+VPU
with 2 lanes) design and the FPGA Shell with HBM, PCIe and Ethernet. The main characteristics
of the MEEP system are included in Table 17.

Table 17. Execution environment setup in MEEP system

Item Details

Execution environment 8 nodes (fpganode02: fpganode09)

MEEP system nodes Login node: fpgalogin1
Compute nodes: fpganode02: fpganode09

Total number of FPGAs
8 FPGAs/node
64 FPGAs in total (fpganode02/f8 to fpganode09/f71)

MAC Range using QSFP0 10.5.1.159 : 10.5.1.222 (fpganode02 : fpganode09)

Execution examples:

 Ping to all nodes and FPGAs. Connected to fpganode03 and pinging to all FPGAs (from
fpganode02/f8 to fpganode09/f71)

D6.4 v1.1 65 / 83

 Get the Ethernet/MAC addresses IPs for several nodes. User connected to the FPGA
login node (fpgalogin1) and get the MAC addresses of all the FPGAs from node
fpganode02 to fpganode09.

 Run an MPI Hello world on 64 nodes.

 Booting Fedora on ACME EA 4H2V.

D6.4 v1.1 66 / 83

6. Conclusions

WP6 was developed with three goals:

 Preparing a platform definition document, including the chosen emulation system, HW
specifications for the FPGA platform, RTL, FPGA Shell and other required IPs.

 Implementing the FPGA Shell, including PCIe interface drivers and IP, HBM interface,
and other IP to enable inter-FPGA communication.

 Implementing FPGA core elements (scalar core, vector core, caches, ring) and
mapping, placing and routing toon the targeted FPGA platform, yielding the final
acceleration emulator prototype.

The first goal was fully covered in deliverable D6.1 Emulation platform specification. The
remaining two goals have been developed in parallel. On the FPGA Shell, the project delivers a
flexible, scalable, configurable, and extensible shell, including communication IPs such as HBM,
PCIe, and Ethernet. Moreover, a set of tools, including the FPGA flow, have been developed with
the aim of simplifying the exploitation and utilization of FPGAs by hardware and software
developers.

The MEEP FPGA Shell, and the toolbox have been used to achieve the third of the proposed
goals. Different configurations of the ACME accelerator have been implemented and run on
both MEEP infrastructures, MEEP servers (Phase 1) and MEEP system (Phase 2).

A very interesting path has been created among the activities developed in different work-
packages, where similar configurations of ACME accelerator have been tested running AXPY
benchmark. On one hand, Coyote simulator executed a version of ACME design based on ACME
specification (deliverable D4.1). RTL run simulations with the latest ACME design, a simplified
approach to the envisioned ACME accelerator. The software team used several configurations
that design as SDV, and finally FPGA synthesized and implemented the final released version
of the RTL ACME together with the FPGA Shell (ACME EA). A collection of experiments is
summarized in Table 18.

Table 18. Collection of experiments related to ACME accelerator across WP4, WP5, WP6
WP /Task ACME design ACME details Experiment Results

WP4. Coyote 4V-1C-1M
Configuration
based on ACME
specs

Benchmark: AXPY
Exec. modes:

epi-mode,
acme-classic,
acme-mode

D4.4
Section 3.4.2

WP4. RTL ACME
1H4G1M

RTL design: Proof
of concept
(simplified
version of ACME
specs)

Benchmarks:
AXPY
MATMUL
Bolt65

Exec. modes:
classic-mode,
acme-mode

D4.3
Section 2.3.3

WP6. FPGA ACME EA
4H2V CICD and synthesis D6.4

WP5. SW ACME EA
4H2V

Benchmarks:
AXPY
GEMM
SPMV
SOMIER

Exec. mode: classic-mode

D5.4
Section 7

D6.4 v1.1 67 / 83

6.1. Key Performance Indicators (KPIs)

Table 19 contains the Key Performance Indicators (KPI) set out for the MEEP infrastructure in
Deliverable D4.1. The KPIs cover WP6 components, and functionalities developments, but also
support for the RISC-V community, including the ACME accelerator.

Table 19. General KPIs of the MEEP infrastructure

Goal KPI Objective

FPGA-based
Platform
Infrastructure

FPGA-based infrastructure with many
FPGAs per server and 100GbEthernet
communication.

Enabling remote connection to the infrastructure,
and capability for using its resources according to
the user needs:

- Accelerator topology,
- Resources allocation:

- one node & one FPGA
- one node multiple FPGAs
- multiple nodes and multiple

FPGAs/node

Support to emulate a single core accelerator
design in one FPGA using the MEEP Shell
for host communication.

. Bitstream generation using the FPGA Shell + one
instance of the VAS Tile core.

. Accelerate the execution of one MEEP targeted
HPC application in one FPGA.

Support to emulate a many-core accelerator
in one FPGA using the MEEP Shell for the
host communication.

. Bitstream generation using the FPGA Shell + one
instance of the VAS Tile.

. Accelerate the execution of one MEEP targeted
HPC application in one FPGA.

Support to emulate a many-core accelerator
in multiple FPGAs, physically connected to
the same node, using the MEEP shell for the
host and FPGA2FPGA communication.

. Bitstream generation using the FPGA Shell + one
instance of the VAS Tile core.

. Accelerate the execution of one MEEP targeted
HPC application in, at least, two FPGAs

Support to emulate a many-core accelerator
in multiple FPGAs, physically connected to
different nodes, using the MEEP shell for
the host and FPGA2FPGA communication.

. Bitstream generation using the FPGA Shell + one
instance of the VAS Tile core.

. Accelerate the execution of one MEEP targeted
HPC application in, at least, two servers with up
to two FPGAs per node.

FPGA Emulator Support to integrate different designs in
MEEP infrastructure using the MEEP Shell.

4

(ACME EA, Ethernet design, EPI/SGA2, OmSs@FPGA)

RISC-V
Ecosystem

Extend the RISC-V vector extension
Define new RISC-V ISA instructions, compliant
with the standard, for performing vector
operations with the specific accelerators (SAs)

Contribute to the Open Hardware
ecosystem with new open source MEEP IPs

3

MEEP FPGA Shell, Coyote, Aurora, 100GbE,
ACME*, Lagarto Hun*

D6.4 v1.1 68 / 83

Goal KPI Objective

Computing IPs
(accelerators)

Support for different specialized
accelerators as part of the VAS Tile core
(4.3.2.2.2)

Demonstrate SAs functionality by reusing the
same SA-Shell and using custom instructions:

- Executing a NN app on SA-NN.
- Executing Bolt65 app on SA-HEVC.

VPU – increase of peak performance of the
accelerator when executing memory-bound
workloads using the Memory Tile
(ACME_mode) vs without using it
(EPI_mode) (4.3.2.2.1)

10%

MEEP Shell

Number of Communication IPs integrated in
FPGA-Shell

5 (HBM, PCIe, Aurora, Ethernet, UART)

Increase of peak performance when using
smart reordering memory access of HBM

10%

Increase of peak performance when using
parallel accesses to the HBM with multiple
MCs

2% per extra MC

This performance will depend on the application
and the data mapping in memory

100 Gb Ethernet

(HW/SW development)
Enabling OS control ever the 100Gb Ethernet

NoC

Aggregate bisection BW

Max Latency

Max Queue Size

EPI Extension VPU extension

Less number of elements/register in the VRF

Dual port VRF

16 lanes

Inter-lane communication variation

Vector extension upgrade to v0.10 (at least 10
instructions)

Support for processing short and long vectors

HPC
applications

Execution of well-known HPC
representative Microkernels: Stream, FFT,
Saxpy, SpmV, DGEM and matmul

6

*IPs not public yet.

Most of the KPIs have been achieved totally or partially, as the color code reflects in Table 18.
Green color means the goal has been completely achieved, Orange that it has been partially
achieved and Red that there is not enough information. More in detail:

 FPGA-based Platform Infrastructure. Performance improvements are not fully
achieved, since even though the MEEP FPGA Shell has the potential to execute host-
accelerator communication through Ethernet (over PCIe and/or QSFP port) at peak
performance, ACME design has several limitations. This is the reason why we have

D6.4 v1.1 69 / 83

preferred to color orange “Accelerate the execution of one MEEP targeted HPC
application in one FPGA”.

 FPGA Emulator. Four different designs have been emulated on both MEEP
infrastructures, MEEP servers (Phase 1) and MEEP system (Phase 2): ACME
accelerator, MEEP custom designs for testing the communication IPs, EPI/SGA2 SDV,
and designs from OmSs@FPGA and AIT flow.

 RISC-V Ecosystem. As reported in Deliverable D5.3, RVV has been extended to support
custom SA instructions. These have been tested through RTL simulations, reported in
deliverable D4.3. Moreover, several IPs have been developed during the MEEP project,
and are available in GitHub. Others, like ACME, cannot be open sourced yet because of
their dependencies with other modules. That is the case of Lagarto Hun and the VPU.
Although MEEP project has extended their features, the baseline IPs are still in the
process of being open-source.

 Computing IPs. Regarding SA-Shell, the same wrapper has been used for both SAs, SA-
HEVC, and SA-NN. Although they couldn’t be tested on the FPGA, their functionality
was tested under RTL simulation, using the Memory Tile behavioral model. About the
performance increase of the VPU, this goal was not achieved. The reason is due to the
inherent limitations of the developed ACME: low performance scalar core, small bus
width for the NoC bus, and no-HPC memory hierarchy. However, the ACME design is a
perfect framework for continuing working on these well-identified limited points to
become an HPC-accelerator.

 MEEP Shell. Regarding the HBM and MCs, the experiments run with the Memory
Sandbox tool demonstrate that these numbers are reachable. However, we couldn’t
run experiments with realistic designs, in this case ACME accelerator to validate these
numbers. That is the reason why we prefer using orange color, instead of green.

 NoC. Not an extensive work has been done on the NoC development, due to the fact
that OpenPiton project offers a stable framework. We preferred to start using that with
the aim of making progress on the ACME accelerator and ensuring correctness, before
starting to do modifications on it.

 EPI Extension. After using EPI.VPU v1.0 as a baseline for MEEP project, several
modifications have been developed. However, it was not possible to upgrade to RVV
v1.0 or improving the inter-lane communication module.

 HPC Applications. Deliverable D5.4 executes several benchmarks on released versions
of the ACME EA, however there was no time to run those benchmarks in acme-mode.
That is the reason why we prefer to mark the goal as partially achieved.

6.2. MEEP FPGA contributions to other projects

Apart from the ones mentioned in the previous deliverable, we have established and keep
collaborating in multiple external groups in different directions, as listed below:

 Princeton University (USA):
Since ACME is based on OpenPiton (developed in the Princeton Parallel Group), we have
applied the following contributions to the original OpenPiton framework
(https://github.com/PrincetonUniversity/openpiton/tree/openpiton-dev):

· Support of Alveo family Xilinx FPGA boards (protosyn switch –board alveou280),
including PCIe interface in QDMA mode.

D6.4 v1.1 70 / 83

· Extension of Ethernet support to Ultrascale+ 100Gb CMAC hard-macro with DMA and
Alveo board level QSFP connectors (protosyn switch –eth), including updates in Device
Tree script for support of Linux driver.

· Support of HBM as an option for system memory (protosyn switch –hbm).
· Support of multiple Memory Controllers for HBM usage (protosyn switch –multimc).
· Support of non-cached access to system memory (protosyn switch –ncmem, required

to work with DMA).
· Modifications of NoC-AXI4 bridge (fix of bug causing a stuck working with HBM; Big-

End/Little-End data conversion, required to work with PCIe/DMA; parameterizable
AXI data width conversion; option to reorder HBM replies according to conveyed in
HBM request AXI ID mapped from core X/Y coordinate or MSHR ID NoC fields).

· Support of alternate 2D-mesh NoC (protosyn switch –pronoc).
· Support of Lagarto scalar core (protosyn switch –core lagarto).
· Support of building under FPGA Shell (protosyn switch –meep)

 University of Paderborn (Germany):
The collaboration with the University of Paderborn is ongoing and consists of several topics:
the FPGA cluster, Aurora designs, and the FPGA Shell.

· FPGA Cluster. Technical experiences have been exchanged with them, since Uni
Paderborn has an FPGA-based cluster preparing for HPC simulations.

· Aurora Designs. The Paderborn group also showed interest in the Aurora designs
developed by the FPGA team. They want to implement Aurora in their cluster. We have
been sharing information about the Aurora designs we have developed and the specs
these designs have. We have given access to our resources to test the projects.

· FPGA Shell. It was also discussed as a final element that includes all the main IPs
developed by the team. They are using it to test the features, e.g., Aurora DMA provides
the Cluster.

 Technical University of Crete (Greece):
We are technically supporting a Ph.D. candidate at the Technical University of Crete to use our
FPGA Shell:

· The aim of this collaboration is to use our FPGA Shell to map an Arianne processor
on the U55C (using our flow for generating bitstream and booting Linux) while
equipping it with an IDS (Intrusion Detection System) accelerator. We update and
synchronize all the main repos to be accessible on GitHub.
https://github.com/MEEPproject

 Polytechnique Montréal (Canada):
We are technically supporting a student from Polytechnique Montréal.

· The aim of this collaboration is to use the FPGA Shell for experimenting with our
OpenPiton repo using Ariane. Her research project is about enabling the vectorized
version of Ariane, Ara with OpenPiton.

D6.4 v1.1 71 / 83

Source code repositories

Lagarto-sdk: https://gitlab.bsc.es/meep/meep-os/lagarto-openpiton-sdk

FPGA Shell

We follow the git submodule strategy to store our code, which means that each module has its
own repository.

FPGA Shell: https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/fpga_shell
(Stable branch: production)

IPs:

Ethernet 100Gb:
https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/fpga-tools

Ethernet 10Gb:
https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/10gb_ethernet

Aurora:
https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/aurora_user_interf
ace

https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/aurora_raw

AXI-BROM:
https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/axi_brom

UART: https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/ariane_uart

FPGA tools

FPGA tools : https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/fpga-tools

ACME emulator accelerator (ACME_EA)

MEEP_openpiton:
https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/meep_openpiton

D6.4 v1.1 72 / 83

Appendix A

Baseline throughput and address mapping policies impact

The presented experiments were performed on a Xilinx Alveo U280 since we are interested in
HPC applications and is the only Xilinx HPC-oriented board that has DDR and HBM, ensuring
fair comparisons [7], [49]. The Alveo U55C, which is the next and latest version, has a common
topology to the U280.

In these experiments, the throughput of a pseudo-channel is not multiplied to obtain the
overall throughput. In fact, in each case every pseudo-channel or bank is accessed
simultaneously, and their throughput is added to obtain the overall performance. From
experiments in Figure8 and Figure 9 we formulate the following conjectures:

 For HBM, by obtaining the same result as performing a multiplication, we demonstrate
that HBM micro-switches are fully implemented 4x4 crossbars and that the memory
controller handles its two pseudo-channels without losing performance.

 The best throughput for the sequential configuration is always achieved by the default
policy ensuring that both memories are configured for this type of access.

 Read and write transactions follow the same trend regardless of the policy, but read
performance is slightly better than write performance.

 The best achievable throughput of DDR4 is 6.18% lower than the bandwidth, while
that of HBM is only 0.01% lower.

 The worst achievable performance of DDR4 is 92.02% lower than bandwidth, while
that of HBM is only 56.39%.

 At maximum performance, each bank of DDR4 delivers up to 19.2 GB/s due to its wider
port width. HBM, on the other hand, is able to deliver 14.4GB/s because, although the
port is half the width of DDR, it operates at higher frequencies.

 HBM needs to enable 4 pseudo channels in parallel to outperform DDR4 and, by adding
more channels, this difference increases.

Micro-switches cross domain

Most modern computer applications including HPC occupy large memory regions. Therefore,
we were interested in how the HBM behaves when accessing different memory regions across
pseudo-channels and micro-switches.

Figure 10 indicates the performance of a single channel as the baseline. Figure 11.A shows the
results of accessing the different pseudo-channels of the HBM emulating a single-threaded
processing element connected to the AXI0 port. These experiments are performed with a
sequential access pattern (RST), a burst size of 16 which is the maximum for AXI3 and RBC
(true) as address mapping policy which offers the best performance for this type of access
pattern according to our experiments. Two main conclusions can be drawn from these
experiments:

 The first is that the performance of the pseudo-channels on the same micro-switch is
the same regardless of the AXI port accessing them.

 The second, and perhaps more important, is that if the processing element leaves the
micro-switch to which it is connected, performance is reduced by about 50%. It is
therefore important that accelerator or processor accesses when using HBM are kept

D6.4 v1.1 73 / 83

at least within the same micro-switch. If more memory is needed, the data should be
split between the micro-switches and accessed in parallel from another AXI port.
Otherwise, no matter whether the access comes from an adjacent or the farthest
micro-switch, performance will be severely affected equally.

Burst impact on performance

For HPC is not enough to analyze sequential accesses, therefore we intend to also analyze
processing threads performing sparse accesses. We emulate this by performing pseudo-
random accesses with our AXI Traffic Generators, as this data is not in consecutive addresses
the burst concept does not apply directly. To have a fair sequential baseline comparison we
performed sequential accesses with a burst size of 1 element = 1 beat = 256 bits = 32 Bytes.

By changing the burst between 2 and 8 no difference has been noticed in the performance but
removing at all causes a throughput decrease of around 30% when the AXI Port is accessing
its vertical micro-switch. Is interesting to note that, as previously, the rest of the micro-
switches in the same stack behave alike and with an overall lower throughput but they only
get affected by around 15% compared to the experiments with burst size. It is even more
significant that, for the first time, we notice a difference between the two stacks in throughput
because the pseudo-channels of the further stack (only in the write transactions) get affected
by 60% compared to the experiments with burst size (Figure 11.B).

Randomizing inside a pseudo-channel

Our first approach when emulating processors or accelerators with sparse patterns was to
maintain the address bits related to the pseudo channel and just randomize the application
address bits which in the case of HBM are [27:5]. Our Memory Sandbox eases doing this by just
changing one parameter (Rand_Whole_Addr). With this configuration we analyze the impact
produced by pseudo-random accesses when opening and closing bank groups and banks when
accessing different columns and rows of the pseudo-channel.

In this experiment (Figure 11.C) we notice for the first time almost no differences between the
micro-switch to which is connected the AXI port and the rest of the AXI ports in different micro-
switches within the same stack. In the case of the read transaction every micro-switch behaves
almost the same. On the other hand, in the write transactions in the first stack all the AXI ports
get affected by around 44% but the vertically attached one reduces its throughput by around
65%. The ones in further stack on the other hand behave like the previous experiment.

Randomizing across different pseudo-channels

In this section we wanted to emulate processors or accelerators with sparse patterns by
randomizing the address inside the pseudo-channel as previous, but also randomizing which
pseudo-channels are accessed. This is done by setting the parameters Rand_Whole_Addr and
Rand_PSCH.

With this configuration we analyze the huge impact of the pseudo-channel change in
consecutive pseudo-random accesses where everything changes in the address. The idea was
to emulate a single thread processor which performs accesses which start in its vertical micro-
switch and in each new experiment add micros-switches to randomize e.g., the first experiment

D6.4 v1.1 74 / 83

randomizes among 4 pseudo-channels, the second one among 8 and up to the 32 pseudo-
channels.

The performance in this case (Figure 11.D) is the worst measured one. It decreases to 0.61%
of the best-case scenario measured for the write transactions and 0.17% for the read ones. We
are aware that some of these experiments are quite extensive and that there is only slight
probability that, for example, an accelerator always accesses to different pseudo-channels.
Nevertheless, the goal is to generate baselines for future comparison and for other developers
to have a starting point to compare with. In fact, our Memory Sandbox is provided as part of
the FPGA Shell with the purpose of providing a software development and experimentation
platform to enable software readiness for new hardware as one of the main MEEP project
goals.

Simultaneous accesses to the same pseudo-channel

In all the previous experiments the emulated architecture is based on a single thread
processing element. Nevertheless, common accelerator multi-core architectures are
heterogeneous ones where several processing elements are accessing the memory in parallel.
All the information presented up to now applies to any of the cores or accelerators in this
heterogeneous system. Nevertheless, we still must explore what happens when several of
these processing elements target the same memory region. With this purpose a set of
experiments were designed with multiple AXI Traffic Generators emulating the different
processing elements. The impact on throughput is analyzed while adding more AXI Traffic
Generators always accessing the same pseudo-channel 0. This was performed with sequential
access to the same address to increase the probabilities of creating the desired collisions that
we wanted in this experiment to measure their impact.

In Figure 12 is shown the huge impact that simultaneous access can have on the HBM. It is
important to highlight that once again all the processing elements connected to the same
micro-switch have similar behavior. Nonetheless, when going from one processing element to
two, the throughput is reduced by around 50% in each of those two (Figure 12.B). Then when
going from two to three, all of them get a throughput reduction of 32% again (Figure 12.C) and
from 3 to 4, the 4 of them get a throughput reduction of 25% once again (Figure 12.D).
According to our measurements, the aggregate throughput of each experiment is the same as
that of only one processing element.

The 3 rightmost sets of bars are for 8 (Figure 12.E), 16 (Figure 12.F) and 32 (Figure 12.G)
processing elements in different micro-switches. Across the 3 experiments it can be observed
that regardless of the number of processing elements those in the first micro-switch have a
similar throughput, and the same happens for the rest. This is explained by understanding that
the micro-switch has 4 inputs for the AXI Ports that have priority to the one connected to the
other micro-switch. According to our measurements, by adding more processing elements the
throughput decreases every time and, as before, the aggregate throughput of each experiment
is the same as that of only one processing element.

The powerful capabilities of FPGAs to address challenging HPC workloads with a
Heterogeneous computing paradigm are currently underexplored because leveraging these
devices is quite burdensome. When FPGAs are used to address HPC applications, but their
resources are not properly configured, the resulting implementations can underperform quite
significantly. This is especially important regarding memories, as FPGAs do not have a

D6.4 v1.1 75 / 83

preconfigured and tested cache hierarchy like microprocessors or GPUs. HBM appears as a
solution being integrated into FPGAs to face the memory wall issue and large companies are
already committed to its wide use.

D6.4 v1.1 76 / 83

Appendix I

Table A shows the MEEP VPU characteristics used in each of the FPGA releases.

MEEP VPU features

 MEEP VPU v1.1
(FPGA 1st release)

MEEP VPU v2.2.1
(FPGA 2nd release)

Number of vector
lanes Up to 16 (grouped in vector-lane pairs for smaller configurations (2-4-8))

Maximum vector
length 128 elements x 64 bits

ACME-classic mode
 128 elements x 64 bits
ACME mode
 512 elements x 64 bits

Number of FMAs 1 Fused Multiply Accumulate (FMA) unit per lane (2 DP FLOP/cycle)

FP operation support Support for 64- and 32-bit FP operation

Integer operation
support Support for 64-, 32-, 16-, and 8-bit integer operations, signed and unsigned

Vector Register File
(VRF)

VRF number of banks: 5.
N of physical vector registers: 40.
Single-Port limited access.

VRF number of banks: 4.
N of physical vector registers: 32
Dual-Port access.
Redesign of lane control logic to leverage
VRF concurrent read/write accesses.

RISC-V vector version RVV v0.7.1

Core’s Interface OVI 1.0 [OVI]

Memory’s interface OVI 1.0 OVI 1.0 & Direct Memory Access

Direct access to L2 Through OVI Through OVI & Long Vector Register File

Execution modes
support

ACME-classic mode
 vector lanes config: 2,4,8,16

ACME-classic mode
 vector lanes config: 2,4,8,16
ACME mode
 vector lanes config: 2, 16

Table A. MEEP VPU characteristics for each of the FPGA releases

D6.4 v1.1 77 / 83

Appendix II

Test resources:

1. 20230407_84559:

 acme_ea_1h16v_u280

2. 20230503_86660:

 acme_ea_16h_u280

3. 20230607_90803:

acme_ea_16h_u280

D6.4 v1.1 78 / 83

acme_ea_16h_u55c

acme_ea_1h16v_u280

acme_ea_1h16v_u55c

D6.4 v1.1 79 / 83

D6.4 v1.1 80 / 83

Appendix III

Flow chart of CICD FPGA Shell Flow

D6.4 v1.1 81 / 83

Appendix IV

1. Production resources results using U55C Alveo card.

ID Module CLB_Luts CLB Register CLB
LUT as
Logic

Block RAM
Tile URAM

20230405_8
4445

ACME EA
4A

 TILE0 56831 36847 10441 56543 41.5 2

 ARIANE 36120 22798 6505 36120 32 0

ACME EA
1H

 TILE0 52960 34657 9464 52672 41.5 2

LAGARTO_
M20 26672 15449 5016 26672 32 0

ACME EA
4H2V

 TILE0 160779 126538 32806 159287 161.5 2

LAGARTO_
M20 132019 107317 27343 130815 152 0

 VPU_INST 99788 89843 20780 98584 0 0

20230502_8
6638

ACME EA
4A

 TILE0 56827 36848 11376 56539 41.5 2

 ARIANE 36119 22799 7228 36119 32 0

ACME EA
1H

 TILE0 55257 37159 10445 54892 41.5 2

LAGARTO_
M20 27844 17951 5443 27767 32 0

ACME EA
4H2V

 TILE0 163668 129080 29495 162099 161.5 2

D6.4 v1.1 82 / 83

LAGARTO_
M20 133769 109859 23986 132488 152 0

 VPU_INST 99855 89694 18360 98651 0 0

ACME EA
1H2G

 TILE0 432534 237321 84648 429379 161.5 2

LAGARTO_
M20 402964 218106 78850 400097 152 0

 VPU_INST 100264 89714 21087 99061 0 0

 SA-HECV 117965 63406 24534 117007 0 0

 SA-NN 146995 43800 26502 146366 0 0

20230528_9
0183

ACME EA
4A

 TILE0 56898 36848 10680 56610 41.5 2

 ARIANE 36162 22799 6726 36162 32 0

ACME EA
1H

 TILE0 55731 37161 10363 55366 41.5 2

LAGARTO_
M20 28321 17954 5519 28244 32 0

ACME EA
4H2V

 TILE0 164088 129076 33948 162519 161.5 2

LAGARTO_
M20 134206 109855 28258 132925 152 0

 VPU_INST 99653 89692 20824 98449 0 0

ACME EA
1H2G

 TILE0 432632 237322 83958 429477 161.5 2

LAGARTO_
M20 403058 218107 78801 400191 152 0

D6.4 v1.1 83 / 83

 VPU_INST 100235 89714 20611 99032 0 0

 SA-HECV 117951 63407 25562 116993 0 0

 SA-NN 147011 43801 26402 146382 0 0

2. Dashboard of each ACME flavor

a . ACME_EA_4A Production release

b. ACME_EA_1H Production release

c. ACME_EA_4H2V Production release

