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Executive Summary 

This document completes the descriptions of the whole Hardware Stack and presents the 
status of the MareNostrum Experimental Exascale Platform (MEEP) as a digital laboratory, in 
which all the activities that have been developed during the project, converge.  

In accordance with the DoA, this deliverable demonstrates the readiness of all the activities 
developed in the different technical work packages (WP) during the lifetime of the MEEP 
project. On one hand, the baseline Accelerated Compute and Memory Engine (ACME) 
accelerator, developed in work package 4 (WP4), is implemented and validated as an emulated 
accelerator on MEEP. For this, different targeted platforms have been used:  

1) the ones available in Phase 1 (a set of 6 servers, where 4 of them include a Xilinx 
Ultrascale U280 FPGA each, and 2 more a Xilinx Ultrascale U55c each), and  

2) the one available in Phase 2 (the FPGA-cluster) to be used as digital laboratory.  

On the other hand, the implementation of the different flavors of the ACME emulated 
accelerator have been done by using the tools developed in WP6:  

1) the MEEP FPGA Shell. This tool provides a seamless communication wrapper to any 
design, in this case the ACME accelerator, for interacting with the host and/or any 
other FPGA, 

2) the FPGA flow. A mechanism developed to automate the bitstream generation in a way 
that can be used as a pipe-clean process from RTL team, but also to schedule periodic 
releases of the RTL designs to guarantee the readiness and compatibility of all the 
programmed designs even after those have been updated; and 

3) the FPGA tools. This is a set of tools specifically developed to facilitate scalability, 
reusability and maintenance of all the different activities required to deploy and use a 
bitstream: programmability, configurability and operability.  

Finally, after the deployment of WP4 designs, using WP6 tools and infrastructure, WP5 
developments are executed, starting from booting the image of the Operating System, and 
continuing with the execution of different applications. This relationship between WPs is 
shown in Figure 1. 

 

Figure 1. Relationship among technical work packages (WP4, WP5 and WP6) 
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This D6.4 Full emulation prototype release (M42) complements the previous deliverables: 

 D6.1 Emulation Platform specification (M6). 
 D6.2 Emulated accelerator initial release (M18). 
 D6.3 Emulated accelerator second release with full capability of inter-accelerator 

communication (M36). 

D6.4 Full emulation prototype release (M42) deeply explores and extends the communication 
capabilities between emulated accelerators implemented on the MEEP FPGA Shell (FPGA Shell 
from now on).  This document describes a more advanced version of the second release of the 
FPGA Shell. This new version extends communication capabilities for any targeted emulated 
accelerator, although the scope of this document is constrained to the ACME accelerator 
developed in MEEP project. 

In accordance with the objectives of the work package 6 (WP6: FPGA programming/Tools 
support and Emulation Integration):  

● Aligned with the platform definition document (D6.1 Emulation platform 
specifications), this document presents the status of the Emulation Platform 
infrastructure, and the list of the tools associated to it (i.e., FPGA flow and FPGA tools). 
With respect to the FPGA flow, in this period MEEP project has maintained, and 
updated the workflow, refining the continuous integration and continuous 
development (CICD) infrastructure. Now more stages of the FPGA flow have been 
added to the process, and it is able to target different FPGAs (U280 or U55C) in 
different infrastructures (Phase 1 or Phase 2). 

● The FPGA Shell has been extended, with respect to the previous versions by adding 
support for: 1) point-to-point communication using Aurora with DMA, 2) collecting 
information of the generated design, and making accessible to any user through the 
read of the InfoROM, and 3) maximizing the access of any accelerator to all the HBM 
channels. 

● Regarding the ACME as an emulated accelerator, by using different configurations of 
the RTL design from WP4 as an input (including a many-core system), different 
versions of it have been implemented and deployed on two different Xilinx Ultrascale 
FPGA cards (i.e., U280 and U55C), targeting two different infrastructures (the one 
available in Phase 1, and the last one available in Phase 2). More information about 
the final ACME release is available in the deliverable D4.3 Full RTL for FPGA final 
release.  
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Introduction 

In this deliverable D6.4 Full emulation prototype release (M42), the full prototype will be 
made ready, running some instances with many scalar processors, other instances with 
scalar+vector. Second and final release of the FPGA Shell. The applications from WP5 will be 
executed in the emulation environment. And an evaluation of the self-hosted accelerator will be 
performed with a comparison to CPU-only, and when possible, GPU execution environments. The 
evaluation criteria will include performance, ease of programming and tuning.  

Moreover, this document completes the information related to the completion of the emulated 
platform bring-up; which includes completing the assembly, configuration, setup and running 
basics tests to guarantee the usability and operability of the machine as digital laboratory. The 
deployment of the ACME design as a Proof of Concept (PoC) has served as a mechanism to 
stress and tune some of the features of the system.  

The document is structured as follows. Section 1 provides an overview of all the activities 
developed in the WP6 during the life of the MEEP project, showing a clear roadmap of all the 
activities from the moment the project started to its end. 

Section 2 describes the updates on the FPGA Shell. It includes improvements on the point-to-
point communication using Aurora, and addition to support multiple channels for accessing 
the HBM memory.  

In Section 3 is reported the current status of the FPGA Tools developed during the lifetime of 
the project, paying special attention to the updates on the FPGA flow. 

Section 4 provides an analysis of the different flavors of the ACME as an emulated accelerator 
deployed on the emulation platform. 

Section 5 describes the final MEEP FPGA-cluster, and demonstrates its status after checking all 
its components, features and characteristics.  

Section 6 summarizes the achievements of this technical workpackage at the end of the MEEP 
project. It also compares the results with the expected ones at the beginning of project, based 
on the proposed Key Performance Indicators (KPI).  
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1. Work Package 6 overview 

MareNostrum Experimental Exascale Platform (MEEP) is intended to become a Digital 
Laboratory for exploring hardware/software co-design activities for European-developed IPs 
targeting the design for Exascale Supercomputers. Thus, two main functionalities are pursued:  

 Being used as an evaluation platform for pre-silicon validation of IPs and ideas at 
speed and scale. 

 Being used as a software development vehicle to enable software readiness for new 
hardware, whereas the architecture is not ready in silicon. 

Within this vision, the mission of this WP6 is to guarantee the proper delivery of the FPGA-
based emulation platform, which means the hardware infrastructure (racks, nodes, FPGAs…), 
and the associated tools for allowing accessing, operating with it and take advantage of its 
features.   

At the moment of testing the correctness of any design, one of the main challenges that all 
hardware developers face is having to deal with topics that are beyond their expertise. In many 
cases the complexity relies on the communication IPs. All elements necessary to communicate 
with the proper design, this is the case of IPs like PCIe, or Ethernet among others. Despite there 
being some solutions in the market tackling this issue, when this MEEP project started they 
lacked flexibility and did not incorporate modern drivers to exploit more advanced features. 
Good examples of this lack of flexibility are the shells offered by Vitis1 and Amazon Web Service 
(AWS)2. In both cases these shells are completely static, which means that all the offered IPs 
must be present all the time, no matter what the needs of the emulated design are. On top of 
that, it is not clear how to interact with those IPs, or how to exploit advanced features, like the 
case of the QDMA driver for PCIe. In this sense the FPGA Shell is proposed as a flexible, scalable, 
extensible, and easy to use option to hardware developers.  

Since the emulation platform is based on FPGAs, MEEP project wants to offer a mechanism to 
let users operate in a seamless way with the infrastructure, just being focused on those parts 
of the design that they are interested in. This is the aim of the FPGA flow developed during the 
project. 

  

 
1 Vitis: https://www.xilinx.com/products/design-tools/vitis.html  
2 AWS: https://github.com/aws/aws-fpga  
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2.Updates on the MEEP FPGA Shell 

From D4.3 deliverable, the FPGA Shell has been extended by adding the following capabilities:  

 Related to main memory, HBM: 1) support of multiple memory controllers (Multi-MC), 
and 2) support of HBM characterization and exploration with the Memory Sandbox 
tool. 

 Related to FPGA-to-FPGA communication: support for Aurora design, with DMA 
capabilities, to enable slow FPGA to FPGA communication. 

 Related to emulated accelerators: 1) support for providing information about a design 
by using the InfoROM module, and 2) support for being compatible with AIT, and 
support its designs as emulated accelerators.  

2.1.  HBM improvements 

HBM is an important module on the FPGA. It plays the role of main memory and enables the 
self-hosting capability for the ACME accelerator. The Alveo FPGAs U280 and U55C include two 
stacks, each of them with 8 memory controllers. The following improvements contribute to 
better understanding HBM capabilities and to exploit the maximum bandwidth of the HBM. 

2.1.1. Support of Multiple Memory Controllers (Multi-MC) 

HBM consists of multiple SDRAM cores each controlled by its own MC. The newest version of 
FPGA Shell supports an arbitrary number of AXI-MM channels for connecting an accelerator to 
multiple Memory Controllers (MC). Therefore, this feature is beneficial for enabling the high 
bandwidth nature of HBM due to the fact. Thus, utilization of multiple MC connections 
potentially increases concurrency of data exchange in a multi-core system through 
distribution of concurrent memory accesses over multiple MCs. Moreover, this improvement 
unlocks the Multi-MC option already available in ACME accelerator, ensuring fully 
compatibility from both sides, the FPGA Shell and the accelerator.  

This Multi-MC feature extends the previous capabilities of the FPGA Shell, and consequently 
two options of Multi-MC usage can be used with any emulated accelerator, being used ACME 
as a PoC: 1) using only one MC for accessing to cacheable data in HBM, and 2) using multiple 
MCs.  

The former case is shown in Figure 2, which presents a legacy way of connecting system 
memory in the OpenPiton framework (used for building ACME) - through the single up-left 
corner tile (as an example). For internal needs ACME requires two types of HBM connection: 
cached access for normal computations and non-cached for sharing data with DMA.  
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Figure 2: Connection of ACME single corner tile to the HBM of FPGA shell using two fixed MC 
channels. 

In Figure 3 cached access is extended to multiple connections utilizing arbitrary configurable 
number of available edge tiles of ACME mesh. If multi-MC feature is enabled in ACME, 
“Minimum Manhattan distance” policy is used for routing memory accesses from any 
computing tile to an edge tile having MC connection. The FPGA Shell provides connection of 
those tiles to HBM within a physical limit of the number of HBM channels. The Multi-MC option 
is also reused in extension of ACME with “Memory Tiles”. Extra required MC channels should 
be enabled in the main FPGA Shell configuration file, where all required interfaces are 
configured: acceleartor_def.csv.  

 
Figure 3: Connection of ACME multiple edge tiles to the HBM of FPGA Shell using an arbitrary 

number of MC channels. 

More details about the impact of this feature on ACME are provided in Deliverable 5.4 Final 
release of the software stack, Section 3.1 Hardware Co-design: HMB Tests with Stream. 

2.1.2.  Support for Memory Sandbox Tool 

An initial analysis of the performance characteristics of typical memory access patterns 
simplifes us to implement benchmarks to reveal the subjacent characteristics of HBM in FPGAs. 
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For this purpose, we emulate the typical sequential accesses with the widely used in FPGA 
programming: Repetitive Sequential Traversal (RST) access pattern and sparse accesses with 
pseudo-random accesses. Since DDR4 is the most popular memory used in computer 
architectures with FPGAs, the following sections present a comparison. 

The Memory Sandbox tool is a tool conceived to help developers to better understand the 
intrinsic details of HBM on the FPGA. It provides higher configurability, insights, and control 
over measurements (e.g., clock cycles of each memory transaction). The tool is a configurable 
environment composed of two components: 1) a user interface for setting-up the experiments 
(front-end), and 2) a set of hardware IPs to run the experiments in the FPGA, according to the 
data introduced in the front-end (back-end). A block diagram of our tool is shown in Figure 4. 

 

Figure 4. Hardware architecture of the Memory Sandbox Tool. 

The front-end provides flexibility in terms of configuring run-time parameters. These 
parameters reduce the FPGA reconfiguration when a memory analysis is performed.  

The back-end mimics processor threads data requests with sequential, or pseudo-random 
memory access patterns. This is done by the highly configurable AXI Traffic Generator IP, 
which minimizes its impact on the measured performance (throughput and latency) and 
guarantees that the data packages are only relative only to memory, whether it is HBM or DDR. 

Our Memory Sandbox tool enables software readiness for new hardware and can be used to 
emulate a diverse set of architectures with different kinds of processing threads, and different 
access patterns.  

The Memory Sandbox tool does not need to regenerate a bitstream to do explore the different 
features of the HBM, nor recode the IPs. This capability saves time on memory exploration. 
Therefore, with the same Memory Sandbox configuration (FPGA bitstream), a user might 
enable different experiments by changing parameters’ values. The number of experiments for 
the same bitstream can be calculated based on the parameters goes to 270.  

To validate the functionality of the Memory Sandbox tool, several experiments were 
conducted. The secondary goal of the experiments is to better understand the main differences 
between DDR4 memory and HBM on the FPGA. These experiments were performed on a Xilinx 
Alveo U280, since includes both kinds of memories, DDR4 and HBM. Table 1 summarizes the 
nature of those experiments, and the conclusions. More details about the experiments in 
Appendix A. 
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Table 1 Throughput analysis comparison between DDR4 and HBM, based on the address 
mapping policies. 

Experiment Description Conclusions 
Baseline throughput & 
address mapping policies 

All pseudo-channels are accessed 
simultaneously. 
Sequential access. 
 
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

= 𝑃𝑠𝑒𝑢𝑑𝑜𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡  

 HBM memory controller 
handles two pseudo-
channels without losing 
performance. 

 Best throughput = default 
policy. 

 Read and write transactions 
follow the same trend, 
regardless of the policy. 

 Best throughput:  
      DDR4 = 6.18% <BW 
      HBM = 0.01% <BW. 
 Worst throughput: 
 DDR4: 92.02%<BW 
 HBM: 56.39%<BW 
 At max. throughput:  
      DDR4= 19.2 GB/s / bank  
      HBM  = 14.4GB/s / bank 
 DDR4 max throughput ≤ 4x 

HBM_banks. 
 

Address mapping policies (Table 2) 
 
DDR4 results: Figure 5  
HBM results: Figure 6 

Micro-switches cross-
domain 

Understanding how HBM behaves 
when accessing different memory 
regions across pseudo-channels 
and micro-switches. 
 
Sequential access. 
 
Single thread PE. 
 
Burst size = 16, RBC=true. 
 
HBM results: Figure 7 (baseline) 8** 
 
*WR: Write 
   RD: Read  
**A: different pseudo-channel emulating a 
single-thread PE connected to AXI0 

 Pseudo-channels’ 
throughput, on the same 
micro-switch, is the 
same. 

 Throughput decreases 
50% when PE leaves the 
micro-switch to which is 
connected. 

  

Burst impact on 
performance 

Understanding impact of sparse 
memory accesses (data in non-
consecutive addresses in the same 
bank). 
 
Single thread PE. 
 
Baseline comparison:  

Sequential access. 
Burst size= 1 element= 1 beat= 256 
bits= 32 Bytes. 
 

Results: Figure 8.B 

 2≤Burst≤8 ⇒ No 
throughput difference. 

 No Burst ⇒ Throughput 
decreases 30%, when 
AXI port access its micro-
switch. 

Randomizing inside a 
pseudo-channel 

Understanding impact of sparse 
memory accesses (data in different 
banks). 
 
Single thread PE. 
 

 Throughput: No 
difference within the 
same HBM stack. 

 First stack: write 
transactions, all AXI 
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Results: Figure 8.C ports throughput 
decreases 44%. 

 First stack: write 
transactions, vertical 
accesses, throughput 
reduces 65%. 

Randomizing across 
different pseudo-channels 

Understanding impact of sparse  
memory accesses (randomizing 
address inside pseudo-channel and 
the pseudo-channel to be accessed) 
 
Single thread PE. 
 
Results: Figure 8.D 

 Throughput decreases to 
0.61% for write 
transactions. 

 Throughput decreases to 
0.17% for read 
transactions. 

Simultaneous accesses to 
the same pseudo-channel 

Multiple Traffic-Generators 
accessing the same pseudo-channel 
0. 
Sequential access.  
 
Results: Figure 9 

 All Pes connected to the 
same micro-switch have 
similar behavior. 

 Throughput is reduced 
50% when PE=2 (Figure 
9.B). 

 Throughput is reduced to 
32% when PE=3 (Figure 
9.C). 

 Throughput is reduced to 
25% when PE=4 (Figure 
9.D). 

 Figures 9.E/F/G 
represents PE=8 in 
different micro-switches. 

 

Table 2 Address Mapping policies for HBM and DDR4. Default Policies Are Marked in Bold 

Policy HBM (app addr[27:5])[21] DDR4 (app addr[33:6])[22] 

RBC 14R-2BG-2B-5C 17R-2BG-2B-7C 

RCB 14R-5C-2BG-2B 17R-7C-2B-2BG 

RCBI N/A 17R-6C-2B-1C-2BG 

BRC 2BG-2B-14R-5C 2BG-2B-17R-7C 

RGBCG 14R-1BG-2B-5C-1BG N/A 

BRGCG 2B-14R-1BG-5C-1BG N/A 
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Figure 5. Throughput for DDR4 Address Mapping Policies. 

 
Figure 6. Throughput for HBM Address Mapping Policies. 

 

Figure 7. HBM pseudo-channel Throughput with Address Mapping Policies. 



 

 
 

                                                                                                                             
D6.4   v1.1 16 / 83  

 

Figure 8. HBM Throughput in different micro-switches. 

 

Figure 9. Simultaneous access for different micro-switches. 

As expected, the throughput performance was more than 12 times better when using all 32 
pseudo-channels in the HBM in parallel than when using the 2 memory banks present in the 
DDR. The different address mapping policies, the burst size, accesses within a micro-switch or 
external ones and the randomization of the address can have a huge impact on the HBM 
throughput. 

This analysis makes an important contribution to the state of the art regarding the impact in 
HBM performance of pseudo-random accesses across and within the pseudo-channels and the 
concurrent access to a same memory region. In addition to that, the Memory Sandbox tool is 
valid not only to the provided test scenarios, but designers and researchers can also create 
their own.  

2.2. FPGA-to-FPGA communication: Adapting Aurora designs 

The new version of FPGA Shell supports Xilinx proprietary light-weight high-speed protocol 
for external communications - Aurora. Aurora is a relatively simple protocol that has been 
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designed to allow other protocols such as TCP/IP to ride on top of it. It uses one or more high-
speed serial GT lanes. It can be referenced to a second or Data Link Layer of the OSI model (the 
layer where data packets are encoded and decoded into bits). Xilinx provides an IP core for 
implementation of this protocol: Aurora 64B/66B3. This IP core optionally includes SerDes 
hard-macro around FPGA GT differential pin pairs. On the other side Aurora 64B/66B provides 
receive and transmit 256-bit wide AXI4-Stream channels. Initial experiments with this IP were 
reported in deliverable D6.2 Emulated accelerator initial release, section 4.3.2 Aurora. 

Full Aurora subsystem instantiated in the FPGA Shell also includes AXI DMA engine for 
providing communications over Aurora by a software. Figure 10 presents the internal 
structure of the Aurora DMA subsystem. 

 

Figure 10: Structure of Aurora DMA subsystem compliant with MEEP FPGA Shell 

In addition, the Aurora subsystem contains logics for control, buffering and diagnostic 
purposes. By default Aurora IP is configured to use all 4 GTY lanes connected to an optical 
QSFP+ connector of Alveo FPGA boards, 10 Gb/s per each lane. The performance results, 
measured in terms of bandwidth, obtained for the Aurora DMA solution under Buildroot Linux 
are measured by using the test application running on a single-core ACME system. Non-cached 
region of HBM has been used for configuration of Xilinx DMA. The achieved bandwidth of data 
exchange between two boards is around 3.5 Gb/s. In addition, our test includes, checking the 
integrity of the exchanged data, and exchanging the ICMP (Internet Control Message Protocol) 
packets on the basis of standard PING command, as an example of running IP protocol packets 
over the Aurora link layer. 

 
3 Aurora 64B/66B: https://www.xilinx.com/products/intellectual-property/aurora64b66b.html  
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The resource utilization report for the Aurora DMA solution is shown in Figure 11. As seen, the 
main source of resource consumption is the Xilinx DMA, which uses around 9K LUTs, whereas 
the Aurora IP uses around 1.7K LUTs. 

 
Figure 11: Utilization report highlighting the Aurora DMA subsystem. 

2.3. Extending emulated accelerator support  

The new version of the FPGA Shell includes two new features related to any emulated 
accelerator. One of them is a ROM memory with information related to the final design 
generated. This data is written during the bitstream generation. The other feature is the 
compatibility with AIT, which allows the generation of bitstreams from application code. 

2.3.1 Emulated accelerator design information: InfoROM 

The infoROM is a memory hardcoded in the FPGA Shell. It stores and displays basic information 
about a design generated using the FPGA flow, including the date of the project generation, the 
SHA values of the Shell and the Accelerator, and the IDs of the active interfaces in the FPGA 
Shell.  

This module plays an important role in the configuration of the FPGA Shell by facilitating the 
storage, retrieval, and display of essential project information, as it is shown in Figure 12. Its 
implementation uses a BROM, with a BRAM address width of 13 and a Memory data width of 
32. It also includes a single AXI slave interface, shared with the HBM from the QDMA. The ROM 
has a range of 8K, with the master base address at 0x200000000 and the master high address 
at 0x200001FFF. 
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Figure 12: Output of infoROM 

2.3.2.  Emulated accelerators from AIT flow 

The difference between the FPGA Shell when compared to Amazon F1 (Amazon Web Services, 
2023) and the Xilinx Vitis Platform (AMD Xilinx, 2023) lies in its configurable hardware, the 
use of QDMA, and the Ethernet-over-PCI mechanism. In addition to that, the MEEP FPGA Shell 
provides hardware/software support for RISC-V-based emulated accelerators, which allows 
bidirectional communication between the host and the RISC-V emulated accelerator.   

Adding support for integrating AIT with the FPGA Shell expands the nature of the supported 
emulated accelerators, encompassing not only hardware-based designs but also incorporating 
the possibility to offload software tasks to FPGA devices. AIT flow uses OmpSs@FPGA to create 
FPGA accelerators from application-level code. The integration with the MEEP FPGA Shell 
makes AIT design board agnostic and permits to take advantage of all the FPGA Shell features. 

A detailed explanation of the AIT + MEEP FPGA Shell integration is provided in deliverable D6.5 
-First AIT release. 
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 3. MEEP FPGA flow: CI/CD improvements 

This section complements the information included in deliverables D6.2 Emulated Accelerator 
initial release, Section 4.4 CI/CD for the MEEP FPGA Shell, and D6.3 Emulated accelerator second 
release with full capability of inter-accelerator communication, Section 5 Continuous integration 
and Continuous delivery for the FPGA flow. 

Deliverable D6.3 presented the role of CI/CD to support the FPGA flow. It described details 
about the implementation of the infrastructure used to generate a common tool for supporting 
development tasks of three different groups (i.e., RTL (WP4), Software (WP5), and FPGA 
(WP6)), and improving the MEEP project performance.  

The improvements on the MEEP FPGA flow are relative to three main areas:  

1) CICD implementation 
2) FPGA flow automation 
3) FPGA flow usability 

3.1. CICD implementation 

There are significant updates aimed to improve the efficiency of the CICD:  

- Docker images: Dockers images has been integrated as runners to improve the 
working system with the MEEP servers. These images improve the memory space on 
the servers since the builds are cleaned up automatically once the run has been 
completed. Moreover, these runners map the Vivado version according to each server 
where the Docker image runs.  

- Licenses: Another important aspect is that some licenses from some specific IP, for 
example, UltraScale+ Integrated 100G Ethernet Subsystem (AMD Xilinx, n.d.), have 
been associated to those runners.  

- Networking: Docker images have been configured to use the same MAC address as the 
server they run. This avoids issues with the licenses. This policy is going to be 
propagated to all the FPGA repositories.  

- Dashboard: To simplify data visualization, some time has been devoted to develop an 
automatic dashboard, based on storing on a database results from the FPGA flow, and 
representing them using Grafana. Significant progress has been made in adding 
dockers for MySQL, phpMyAdmin, and Grafana. The idea is to parse the resource files 
to show using a Python script and create tables to deploy on the database using MySQL 
commands. PhpMyAdim helps users to work with database information, using a GUI 
(Figure 13). This task is not completed, and we plan to continue it in subsequent 
projects. 
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Figure 13. Work in Progress dashboard using Grafana 

3.2. FPGA flow automation 

As it was presented in deliverable D6.3, the FPGA flow automates the generation of a bitstream, 
going through the synthesis, implementation, reports, and bitstream generation stages. In 
addition to that, the FPGA flow is a bridge between RTL (WP4) and software (WP5) teams, 
which must provide a certain level of reliability on the delivered design. With this purpose, the 
FPGA flow has improved the validation stage of a bitstream by adding more reliable FPGA tests 
in the form of Linux booting, execution of bare-metal benchmarks, and Linux distro execution, 
as it is shown in Figure 14. The drivers, ONIC drivers, for this hardware validation are an 
essential part of the whole process. More information about these drivers in deliverable D6.3. 
and D5.4. The flow chart used by MEEP FPGA for the CICD flow is present in Appendix III. 

In parallel with the automation of this validation process, most of the FPGA tools (fpga_tools) 
have been updated to be compliant with requirements either the FPGA flow or the Phase_2 
infrastructure (MEEP cluster).   

 

Figure 14. New FPGA test added to the FPGA flow. 

3.2.1. Booting Linux: Buildroot 

The Linux test was the first test included. It continues to be part of the flow. It is required to 
load the bitstream to the FPGA. Then, when we boot, we will validate using the UART output 
log to find a coincidence that helps validate the test. A detailed explanation can be found 
deliverable D6.3, Section Continuous Integration and Continuous Delivery for the FPGA flow. 
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3.2.2. Bare-metal Benchmarks 

The bare-metal benchmark is a submodule of the ACME_EA repository. The definition of the 
ACME bitstream determines if the system is single-core or multi-core. The flow will compile 
the list of tests suitable for each case according to the number of cores. These tests are from 
repository hosts unit tests for RISC-V processors. (riscv-software-src, 2023). To complete the 
list, new benchmarks have been included (MEEP, 2023). The list of benchmarks is collected in 
Table 3, for a single-core design, and Table 4, for a multi-core design.  

Table 3. RISC-V Bare-metal Benchmarks for a single core system 

Test RISC-V Benchmark Operation  Problem Size Test Name 

1 histogram Integer 1024 histrogram.riscv 

2 median Integer 1024 int-median.riscv 

3 multiply Integer. 1024 int-multiply.riscv 

4 qsort Integer. 2048 qsort.riscv 

5 rsort Integer. 2048 rsort.riscv 

6 spmv Integer. 1000 x 1000 10004 nnz int-smpv.riscv 

7 vvadd Integer. 1024 int-vadd.riscv 

8 matrix mult. Integer. 64 x 64 int-matrix_mult.riscv 

9 fibonacci Integer. 25 fibonacci.riscv 

10 towers Integer. 7 discs 40 runs towers.riscv 

11 bubblesort Integer. 1024 int-bubblesort.riscv 

12 median Floating Point. 1024 fd-median.riscv 

13 multiply Floating Point. 1024 fd-multiply.riscv 

14 spmv Floating Point. 1000 x 1000 10004 nnz fd-smpv.riscv 

15 vadd Floating Point. 1024 fd-vadd.riscv 

16 matrix mult Floating Point. 64 x 64 fd-matrix_mult.riscv 

17 bubblesort Floating Point. 1024 fd-bubblesort.riscv 

18 dhrystone Integer. 500 dhrystone.riscv 

19 matrix mult (mm) Floating Point. -- mm.riscv 

 

Table 4. RISC-V Bare-metal Benchmarks for a multi-core system 

Test RISC-V Benchmark Operation  Problem Size Test Name 

1 matrix mult. Floating Point. 4096 mt-matmul.riscv 
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2 vvadd Floating Point. 4096 mt-vvadd.riscv 

3 axpy Floating Point. 16384 mt-axpy.riscv 

4 somier Floating Point. 1024 mt-somier.ricv 

5 histogram Integer. 1024 mt-histogram.riscv 

6 stream Floating Point. 16384 mt-stream-copy.riscv 

7 stream Floating Point. 8192 mt-stream-triad.riscv 

8 is Integer. 1024 mt-int-sort.riscv 

3.2.3. Booting Fedora 

The third test is booting Fedora distribution. More information about Fedora image in 
deliverable D5.4 Final release of the software stack, Section 4.1 Operating System. The booting 
process is the same as the Linux stage (booting Buildroot), but now for a different element, the 
OpenSBI binary. In both booting processes, Linux and Fedora, the device tree is used to build 
the image. Consequently, the bitstream must be updated and synchronized with the drivers in 
the binaries to boot without errors. This is a suitable methodology to prevent hardcoded 
memory addresses. Everything depends on the device tree data of the ACME_EA. Figure 15 is 
a screenshot of the Fedora booting process on top of the ACME accelerator. 

 

Figure 15. Booting Fedora output 
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3.2.4. Deploy 

The final deployment contains a structure of folders where the different information is written. 
The resultant folder structure is shown in Figure 16. 

- Bin: Includes all the binaries of the benchmarks according to the number of cores of 
the system.  

- Bitstream: Contains all the bitstreams generated for each environment. The bitstream 
name includes the pipeline date, the ACME_EA flavor name, and associated 
environment used for its generation.  

- Boot: Includes the OPENSBI binary, and the script to boot any binary for the ACME 
accelerator.  

- Dcp: Contains design’s checkpoints for each ACME_EA flavor, including information 
for their synthesis and implementation stages.  

- dts: This folder keeps the devices tree generated from the OpenPiton framework, for 
each of the ACME_EA flavor.  

- logs: Contains the output results of booting Linux/Buildroot and the Fedora stages.  
- project: This folder contains the most important files of the flow: system_top.sv and 

gen_system.tcl.  
- reports: Includes all the reports generated during the synthesis and implementation.  
- Test_logs: Store the results of the bare-metal benchmarks execution.  
- The final script contains: 1) the commit SHA (commit_sha.txt) to identify the FPGA 

Shell version and the MEEP ACME_EA commit (EA_info.txt) version used for a 
deployment. It also includes the output log (make_project.log) when the project was 
generated (date.txt). 

 

Figure 16. Deploy structure on MEEP servers 
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3.3. FPGA flow usability: Working environments 

An environment refers to an FPGA flow with a determined configuration and a well-defined 
purpose. The MEEP CICD has improved its support to the FPGA flow. Therefore, different 
environments and new tests were included to automate the validation of a hardware design 
along the different stages of the FPGA flow. This section is focused on the validation of the final 
emulated design, once the bitstream has been generated. 

Thus, two different environments have been set:  

- Production: Production is the main environment. All the hardware deployed will be 
accessible to the end user. This environment needs to be stable and reliable. The 
information is highly available, and there are two places where the data can be found. 
The first one is the MEEP servers, and there is a special place where all the information 
is shared among the servers. The second one is the Nexus Repository Manager, 
http://release.meep-project.eu . Here, it only deploys the production bitstreams. 

- Development: Two different development or pre-production environments are 
enabled: 1) Test, and 2) Quick-test. These pre-production environments help 
developers to test and debug new features for under-development designs, before 
being deployed to the Production environment.  

The differences between Test and Quick-test environments are: 1) how the design is 
implemented, 2) the elements involved, and 3) The number of Emulated Accelerators 
that can be tested at once.  

o Test: We can use the keyword "matrix" to test different configurations in the 
same pipeline using the GitLab ci tool. In this manner, the FPGA CI flow can 
ensure that changes are thoroughly tested and validated before they are 
deployed to Production. 

o Quick-test: The Quick-test environment only can test one EA configuration. 
Still, it helps the RTL and FPGA developer speed up the process to continue the 
analysis with the other domains. 

Table 5 describes how the developers can use each environment, explaining the main elements 
involved in the process. 

Table 5. FPGA flow environments 

Environment Description Source Elements 

Production 
Help to ensure the stability and 

reliability of bitstreams 

- Merge request 
- Schedule 

(monthly) 

Design: acme_ea 
Routers: Pronoc 
Board: U280, U55C 

Test 

Help developers to thoroughly test 
and validate design changes for 

configurations of emulated 
accelerators. 

Commit message 
#TestCICD 

Design: acme_ea 
Routers: OpenPiton 
Board: U280, U55C 

Quick-test 

Help to speed up the analysis for one 
specific under-development 

configuration design of an emulated 
accelerator. 

Gitlab web page 
Design: any ea 
Routers: OpenPiton 
Board: U55C 
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4.   ACME Emulated Accelerator (ACME_EA) designs 

This section presents results of the final release of the ACME accelerator, presented in 
deliverable D4.3 Full RTL for FPGA release, as an emulated accelerator (ACME_EA) on the FPGA 
platform. Different modules have been developed by the RTL team as part of the ACME 
accelerator: scalar core, vector accelerators (VPU and Systolic Arrays (SA-HEVC, and SA-NN)), 
and Memory Tile.  

Figure 17 summarizes the information of this section, in which information of different 
ACME_EA configurations is presented. Moreover, this section combines the working 
environments and the ACME accelerator designs. To clearly identify each of the design’s 
configuration the naming convention agreed by all the technical work packages (WP4-WP6-
WP5) is followed. This terminology is explained in deliverable D4.3, section XX Naming 
convention. 

 

Figure 17. Diagram overview system.  

Evaluating and comparing the elements presented here are vital in assessing performance and 
driving progress. A comparative analysis of two distinct environments will be shown: 
Production and Test. The MEEP FPGA focus will be on examining the elements within each 
domain and exploring the results generated over the past three months. Understanding these 
elements' unique characteristics and outcomes can help gain valuable insights into their 
performance. 

4.1.  ACME_EA designs by working environment  

4.1.1. Production environment releases 

Production releases only include results from stable configurations of the ACME_EA 
accelerator. That means, those ACME flavors that have passed successfully all the FPGA Flow 
stages. These emulated accelerators use ProNoC as routers and have been implemented 
targeting the two different boards available in MEEP infrastructures: U280 and U55C.  
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Four different configurations have been promoted to Production, and their deployment results 
are available in Nexus Cloud:  

- ACME EA 4A: This design is used as a reference platform by WP5. It is a multi-core 
system with Ariane as scalar core and no vector accelerator.  

- ACME EA 1H: This is the simplest configuration of the ACME accelerator when using 
Lagarto Hun as scalar core. This is a single core design with no vector accelerators.  

- ACME EA 4H2V: This design scales the previous one, to 4 cores. Moreover, each of the 
cores includes a MEEP.VPU with only 2 vector lanes.  

- ACME EA 1H2G: This design is a single core design with the three vector accelerators 
developed during the project (VPU, SA-HEVC and SA-NN).  

Table 6 summarizes the characteristics of each of these previous ACME_EA designs. As it is 
shown here, any of these ACME_EA accelerators include a Memory Tile in Production. This is 
because the Memory Tile is not mature enough to be considered stable. As a consequence, 
these designs only might be set to execute in classic-mode.  

Although the Memory Tile has been integrated in ACME design, some problems arose during 
the FPGA flow, which made no possible to get results, neither under the Test environment. 
That means that only RTL simulations results are offered for a full design, as it is reported in 
deliverable D4.3. 

In addition to this, evaluation results for ACME EA 4A and ACME EA 4H2V have been 
performed by WP5, and reported in deliverable D5.4, Section 5 Evaluated environments. 

Table 6. Production releases 2023 

Description ACME EA 4A ACME EA 1H ACME EA 4H2V ACME EA 1H2G 

Architecture Multi-core Single core Multi-core Single core 

NoC ProNoC 

core 

Core Ariane ACME VAS Tile (Lagarto Hun + vector accelerators) 

Scalar Core 
RV64GC (6 stages), 

in-order, double 
issue 

RV64GC (5 stages), in-order, single-issue 

VPU No No MEEP.VPU MEEP.VPU 
RVV v0.7.1 No No Yes Yes 

 Custom SA No No No Yes 

Config. L2 size Yes Yes Yes Yes 
Config. L1 cache line No Yes Yes Yes 

Number of Tiles 2x2 1 2x2 1 
Linux OS support Buildroot (OpenSBI), Fedora 

Host/Device comm. PCIe, Ethernet over PCIe 
FPGA Shell support Yes 

Memory Tiles No No No No 
Clock frequency 50 MHz 50 MHz 50 MHz 50 MHz 

exec 
mode 

classic-mode Yes Yes Yes Yes 

acme-mode - - - - 
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4.1.2.  Designs under development: Test and Quick-test environments 

Test and Quick-test environments use OpenPiton routers for any of the ACME_EA designs, and 
the targeted boards are: U280 and U55C for Test, and U55C for Quick-test. 

Two new designs are run under Test, as it is shown in Table 7, in addition to the ones presented 
in Production:  

- ACME EA 1H16V: This design pursues two things: 1) stress the FPGA flow and check 
the availability of resources on the FPGA to place and route a system with a single core 
and a VPU with 16 vector lanes; and 2) demonstrate the functionality of this MEEP.VPU 
configuration. 

- ACME EA 16H: This configuration demonstrates the scalability feature of the ACME 
design.  

One of the problems faced with these designs is that they do not always close timing. These 
designs are heavy in FPGA resources, and that makes close timing difficult during the place & 
route stage of the FPGA flow. This instability prevents them from being promoted to 
Production. However, for testing purposes, WP5 used one of the generated bitstreams that 
completed the FPGA flow, even under the Test environment, for running some experiments.  

Table 7. Test releases 2023 

Description ACME EA 1H16V ACME EA 16H 

Architecture Single core Multi-core 

NoC OpenPiton Routers 

core 

Core ACME VAS Tile (Lagarto Hun + vector accelerators support) 

scalar core RV64GC (5 stages), in-order, single issue 

VPU Yes No 

RVV 
v0.7.1 Yes No 

Custom SA No No 

Config L2 size Yes Yes 

Config L1 cache line No No 

number of Tiles No 4x4 mesh 

Linux OS support Buildroot, Fedora Buildroot, Fedora 

Host/Device comm PCIe, Ethernet over PCIe PCIe, Ethernet over PCIe  

FPGA Shell support Yes Yes 

Memory Tiles No   No  

Clock frequency 50 MHz 50MHz 

exec 
mode 

classic-mode Yes Yes 

acme-mode - - 
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4.4.  ACME_EA resources utilization 

This section presents the resource utilization resources for the previous ACME_EA designs. 

4.2.1 Production FPGA resources (U280) 

 

Figure 18. ACME EA 4A Production release for U280 board. 

 

Figure 19. ACME_EA_1H Production release for U280 board. 

 

Figure 20. ACME EA 4H2V Production release for U280 board. 
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Figure 21. ACME EA 1H2G Production release for U280 board. 

 

Figure 22. FPGA Shell using U280 board.  

These figures (Figure 18, 19, 20 and 21) depict the report utilization using the U280 FPGA 
board for the Production environment, whereas Figure 22 represents the resource utilization 
exclusively for the FPGA Shell. Table 8 collects all these results. 

Table 8. ACME EA releases resource utilization on U280 

Design CLBs BRAM Figure 
ACME EA 4A 7% 2% 30 
ACME EA 1H 7% 2% 31 
ACME EA 4H2V 20% per Tile 

80% in total 
8% 
24% in total 

32 

ACME EA 1H2G 54% per Tile 8% 33 
FPGA Shell 15% in total 6% 34 

 

In the case of the Lagarto Hun core releases, there are three different configurations and 
different complexities:  

- ACME EA 1H is a light system.  
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- ACME EA 4H2V. The heaviest part of the design is the VPU. Four tiles use 80% of the 
total CLB available on the U280 board, and including the FPGA Shell, the CLBs reaches 
around 95% of the total.  

- ACME EA 1H2G. This flavor is a single-core system using two vector lanes of VPU and 
also including the two SAs (SA-HEVC and SA-NN). The CLB utilization for one tile is 
around 54% of the total. Including the numbers of the FPGA Shell, it can be 70% of the 
total CLB elements. 

4.2.2.  Production FPGA resources (U55C) 

Similar results have been obtained when targeting the U55C board. More details about the 
results in Appendix IV. 

Here only the ACME EA 1H2G configuration has been included for representing the whole 
group of designs. (Figure 23 and Figure 24) 

 

Figure 23. ACME_EA_1H2G Production release for U55C board. 

 

Figure 24. FPGA Shell using U55C board. 

As expected, comparing results in both FPGAs, U280 and U55C, there is not a big difference in 
terms of resources. 
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4.2.3.  Test FPGA resources 

As it was previously mentioned, the bitstream generation of ACME EA 1H16V and ACME EA 16H 
designs was challenging, due to the place & route stage. Actually, there are situations for the 
ACME EA 1H16V where a tile uses 85% of total CLBs. A similar situation is faced with ACME 
EA 16H, in which one tile uses around 5% of the CLBs, and therefore, the 16 tiles require 80% 
of CLB resources of the total. 

FPGA Shell has a technique to improve place & route results using different policies iteratively 
until closing timing. This feature is available for FPGA developers using the Test environment, 
and that is how the new methodology includes creating a plan for place_design according to 
the board type and having them in an incremental loop over the strategy for the route_design 
process. 

Appendix II shows the last release resources results we have available now. Both boards faced 
the same issue. The previous release shows that the new methodology works, and we can 
complete the implementation phase.  

4.3.  Final emulation FPGA release of the ACME_EA accelerator 

Results shown in previous sections on the FPGA have been obtained using the more advanced 
version of the ACME_EA accelerator, which includes new features with respect to the second 
release presented in the deliverable D6.3, Section 4 ACME Emulated Accelerator (ACME_EA). 
For clarity, Table 9 compares the evolution of the ACME accelerator from the first to this final 
release. 

Table 9. Characterization of the first and second FPGA release of the ACME_EA accelerator  

Description 

ACME_EA FPGA 1st 
release 

ACME_EA FPGA 2nd 
release ACME_EA FPGA 3rd release 

M18 M36 M42 

Architecture single core many-core 

NoC Bus NoC (Routers support: OpenPiton and ProNoC routers) 

core 

ACME VAS 
Tile core 

scalar core + VPU 
scalar core + VPU + SAs + 

LVRF 

scalar core 
RV64IMA (5 stages) 

In-order 
RV64GC (5 stages) 

In-order 
RV64GC (5 stages) 

In-order, with branch-predictor 

VPU 
MEEP.VPU v1.0 
(See Appendix I) 

MEEP.VPU v2.2.1 
(See Appendix I) 

MEEP.VPU v3.0 

RVV v0.7.1 Yes Yes Yes 

Custom SA No No Yes 

Memory Tile No No Yes 

Config L2 size Yes Yes Yes 
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Config L1 cache line No No Yes 

Number of Tiles No Yes (2x2* 2D-mesh) 

Language SystemVerilog and 
Chisel 

SystemVerilog 

Linux OS support Yes (buildroot) Yes (Fedora 31) Yes (Fedora 33) 

Host/Device 
communication  

PCIe 
PCIe, Ethernet over 

PCIe 
PCIe, Ethernet over PCIe, 

Ethernet 100GbE 

FPGA Shell support Yes Yes Yes 

Memory Controllers 
(MCs) 

N/A 
Support for Multi-MCs 

(from ACME) 
support for Mult-MCs (from the 

Shell) 

Clock frequency 50 MHz 50MHz and 100MHz* 50MHz 

exec 
mode 

classic-mode 
Yes (scalar) 

Yes (scalar + vector 
{axpy 2:16 lanes}) 

Yes (scalar + vector{axpy, 
spmv, dgemm, fft 2:16lanes}) 

acme-mode No Yes** Yes 

M36 is the evolution of M18, and it is under development by the RTL team. 

*100MHz is only possible when the many-core system only includes the scalar core in each of the Tiles. 

Running the system at 50MHz allows the manycore system to close timing with a 4x4 configuration, when the tile 
includes the scalar core and the VPU. 

**Tested with the LVRF isolated (data preloaded in the register), running a few instructions; and no MT in the system 

 

The Emulated Accelerator releases are available in the MEEP Gitlab repository, where the main 
features of the different releases are also described, and a link to each of the bitstreams is 
provided: https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/fpga_shell/-
/wikis/MEEP-FPGA-Releases. 
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5.  MEEP FPGA-Cluster bring-up 

This section describes the status of the MEEP FPGA cluster or FPGA-based digital laboratory, 
not only in terms of the configuration and setup of the infrastructure, but also the set of tools 
developed around it to supports HW/SW co-design activities of emerging technologies, based 
on European-developed IPs.  

The Digital Laboratory expands the capabilities of a single FPGA platform to this large-scale 
platform, moving from a single FPGA system into multiple FPGA systems that can be used to 
look into the future at the system level. 

5.1.  Infrastructure 

As shown in Figure 25, the MEEP system consists of two racks: each one with 6 nodes, and each 
node with 8 FPGAs. Each rack is fully connected to a switch (direct cabling from each node, but 
also each of the 48 FPGAs). Then, the racks are connected to each other through the 
interconnection of both switches.  

Figure 25. MEEP FPGA cluster connectivity: 2 racks x 6 nodes x 8 Alveo-U55C boards. 
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Table 10 collects the information for one rack, the same applies for both racks. 

Table 10. Large-scale FPGA machine details  

Digital laboratory infrastructure details 

Hardware components 

Admin standard nodes 

4 
   Each one with:  
      2x intel Xeon Gold 6330 28C 205W 2.0GHz Processor 
      OS: RedHat Enterprise Centos 8.1 

Compute nodes 

12 (fpgan01:fpgan12) 
   Each one with:  
      2x Intel Xeon Gold 6330 28C 205W 2.0GHz Processor 
      OS: RedHat Enterprise Centos 8.1 
      8x FPGAs Xilinx Alveo U55C 

100 Gb Ethernet Switch 
SN4600C (64x100Gb) 

2 
 

USB Hub 
12 
   Each one with 10 ports 

Hardware connectivity 

PCIe host bridges 
Connect each of the host nodes with its 8 corresponding 
FPGAs 

100Gb Ethernet switches 
Each of the 96 FPGAs connected through QSFP0 
Each of the 12 compute nodes 
Each of the 8 Admin nodes 

Direct FPGA to FPGA connection 
(no switch) 

(Only available in Rack1) 
48 FPGAs in pairs through QSFP1 (inter-FPGA connectivity 
per node) 
        FPGA1 – FPGA2 
        FPGA3 – FPGA4 
        FPGA5 – FPGA6 
        FPGA7 – FPGA8 

USB Hubs (10 ports) 
Connection per node:  
   8 FPGAs per node 
   The compute nodes 

A partial view of the real system is shown in Figure 26, where only four nodes per rack are 
visible. The image on the left corresponds to Rack1, and the one on the right shows Rack2. 
There exist clear differences in the physical cabling between both racks. The 48 FPGA cards in 
Rack1 have inter-FPGA connectivity via QSFP1 to the FPGA card adjacent to it. This creates a 
paired grouping of QSFP1 P2P interconnectivity with any intermediate switch. In the case of 
Rack2, FPGAs are not directly connected in pairs. This means that QSFP1 is unused for now. 
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Figure 26. Physical cabling of the large-scale FPGA machine racks. (Rack1-left, Rack2-right)  

As Figure 27 depicts, QSFP0 is the top port on the FPGA card, and QSFP1 is the bottom port. 
Regarding the cables, the black cables are copper QSFP DAC connections between QSFP0 on 
the FPGA card and the cumulus 100GbE switch. Then, the point to point interlink 
communication between adjacent FPGAs uses fiberoptic cables.  

   

 
Figure 27. U55C FPGA position in the node 

The third port in the FPGA, the USB connector; is used to connect an FPGA of a node to one USB 
Hub port, by using the cable shown in Figure 28. 
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Figure 28. USB cables to connect an FPGA with the USB Hub 

Even though initially the USB Hub shown in Figure 29 was installed, it has been finally replaced 
by the one shown in Figure 30. A more basic hub model, with 10 ports instead of 16. Two 
reasons motivated this replacement: 1) smaller dimension, and 2) no stockage issues. The new 
USB Hub with only 10 ports fulfils the requirements per node, and it is possible to 
accommodate 6 of those in a rack. The purpose of each of the hubs is facilitating FPGA 
programmability using JTAG, but also getting output data through the UART. 

 

Figure 29. USB HUB with 16 ports installed initially. 

 

Figure 30. USB HUB with 10 ports finally installed 

The assembly and physical installation of this system comprises the execution of several 
activities, executed over several months. The overview of these activities is shown in Table 11.  

Table 11. Assembly and Physical installation process 

Activity Status end of MEEP 

1) On-site machine assembly Completed (Lenovo) 

2) Cabling and configuration 
Full Rack1 
Full Rack2 

fpganode01, fpganode12 
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3) Network cabling 

Full Rack1 
Full Rack2 

fpganode01, fpganode12 
System connected to BSC 

network 

4) Electrical installation Completed 

5) Machine OS and cluster 
installation 

Full Rack1 
Full Rack2 

6) FPGA SW requirements As per request 

7) FPGA-to-FPGA 
programmability  

(QSFP+ and JTAG cabling to USB 
Hubs) 

Full Rack1 
Full Rack2  

8) Tests (Hardware basic checks) 
Full Rack1 
Full Rack2 

Work done by Lenovo team 
Work done by BSC team 

The assembly and the physical installation took place on-site, at BSC facilities. The assembly of 
all the modules was led by Lenovo team; whereas the rest of the activities relied on BSC team; 
except for the electrical installation that required supervision from Lenovo. In any case, BSC 
team has access to Lenovo support for all the issues related to the configuration and 
installation of the machine. 

Before facing the installation of the full system, BSC team worked on a small set of it, starting 
from one node, and once it was stable, adding new nodes in an incremental fashion. This 
brought the possibility of tunning and debugging the installation, but also adapting the setup 
accordingly. 

5.2.  Configuration and setup 

The MEEP system configuration and setup has been incrementally implemented, starting with 
one node, and scaling up to multiple nodes after ensuring functionality and correctness on the 
small environment.  

5.2.1 Basic configuration and setup 

Before getting the large-scale FPGA machine accessible to any user, a basic setup was required:  

 Preparation of an operating system image and corresponding packages (according to 
Lenovo indications).  

 Installation of some packages and tools required by Operations team for monitoring, 
managing, and guaranteeing good levels of security. 

 Connecting the large-scale machine to the BSC LAN using GBIC cables, to simplify 
networking and software installation activities. 

These previous activities are common to most of the systems under Operation team at BSC, 
since they are executed on the host. The novelty for the teams comes from the fact of having to 
handle 96 FPGAs, new devices for the Operations team. To deal with the associated complexity, 
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they were supported by the BSC FPGA developers all team. The working methodology was 
based on an iterative and incremental learning process consisting of testing, understanding, 
replicating, validating, and, in the end, automating. The first stage was a completely manual 
process working on a single node.  

From an operational perspective, MEEP system was structured into five different types of 
nodes, according to their purpose: 1) login, 2) host, 3) head, 4) compute, and 5) FPGA nodes. 
More details are in Table 12. 

Table 12. Type of nodes as part of the large-scale FPGA machine 

Type of node Amount Tag Accessibility 
Login node 1 fpgalogin1 only Operations 

Virtual Machine host 
node 

1 
VM/FPGA  
(96 in total) 

fpgavmhost<node>f<card> 
<node> [01:12] 
<card> [01:08] 

Operations  
Users 

Head nodes 2 fpgahead<1,2> only Operations 

Compute nodes 4 fpgac[01:04] 
Operations 
Users 

FPGA Host nodes 12 fpgan[01:12] only Operations 

1) Login node: it is used to get access to the FPGA cluster and being able to operate with one 
or several FPGA cards. 

2) VM host node: it is a node that creates a Virtual Machine (VM) instance for each of the 
FPGAs of the cluster to allow users access to operate with a specific FPGA without interfere 
with other users.  

3) Head node: There is one head node per Rack, which allows to control overall operation of 
a rack, and it is only accessible by Operations. 

4) Compute node: These are general compute nodes, with no FPGAs associated. 
5) FPGA node: Each of these nodes has 8 FPGAs connected to it. The control of the node is 

under Operations, although working together with the FPGA team, they are allowing 
certain privileges to users by adding commands to a sudo list.  

Regarding the specific software packages required for guaranteeing a basic functionality of the 
system, the following ones were installed:  

 Xilinx Vivado 2023.1 
 Xilinx Vitis development environment 2021.2 and 2022.1 (FPGA login node) 
 Xilinx XRT environment 2023.1 (FPGA nodes) 
 UART clients picocom, microcom (FPGA nodes)  
 Software development tools for OmpSs and others (clang, boost-1.66, ninja, lld, hwloc, 

numactl, gcc-10, gfortran) 

 Gitlab-runner for CICD flow 

 Slurm and Slurm X11 

The last one is not specific to FPGAs, but for SLURM installation. Although SLURM was not 
configured from the beginning, Operations team installed all the packages required, based on 
their experience to progress on the configuration of the system.  

The above scenarios are currently in use (in part) at the FPGA cluster by several BSC projects 
(e.g., MEEP, EPI, OmpSs). All projects actively utilize all depicted interfaces (PCIe, Ethernet-
over-QSFP, UART, JTAG), thus confirming their proper hardware and software configurations. 



 

 
 

                                                                                                                             
D6.4   v1.1 40 / 83  

Xilinx Vitis environment 

The part of standard Alveo packages for the U55C board from AMD Xilinx version 2023.1 
responsible for Vitis runtime environment are installed at each of the compute nodes. Besides 
PCIe drivers providing Vitis based runtime flow (xocl OS kernel module) and card management 
(xclmgmt OS kernel module) the packages contain flashable partitions for the cards: 

 PCIe XDMA based Xilinx Platform xilinx_u55c_gen3x16_xdma_base_3 for programming 
to FPGA after cold reboot and providing Vitis based flow from FPGA side. 

 Satellite Controller firmware version 7.1.22 providing management and monitoring of 
on-board hardware. 

Both of the above partitions were flashed to all 96 FPGA boards in order to support standard 
Xilinx Vitis runtime flow and support hardware management/monitoring through the Satellite 
Controller. 

5.2.2. Advanced configuration and setup 

Based on Operations and FPGA team requirements for the envisioned functionality of the 
MEEP system, as digital laboratory, a more advanced configuration was implemented.  

One of the most complex activities has been configuring the PCIe. A very important peripheral 
for establishing proper communication between the host node and each of the FPGA cards. The 
complexity relied on two aspects: 1) identifying the physical PCIe port mapping, and 2) 
adapting the drivers to the needs of present and future users. The former, physical mapping 
had also two levels: 1) understanding and clearly identifying the mapping between the 
physical chassis port and the PCIe port slot (Figure 31); and then 2) associating the PCIe and 
FPGA port mapping (Figure 32). 

 

Figure 31. Mapping chassis example 
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Figure 32. PCIe – FPGA mapping example 

At functionality level, another challenge was to adapt the PCIe drivers to two different users’s 
requirements, and then at system configuration level being able to make them compatible. In 
this sense, the FPGA team used two different working scenarios: one operating with xdma 
drivers, and another with qdma drivers. More details are included in Table 13. 

Table 13. More configuration details.  

PCIe Drivers 

PCI Drivers: 
 xocl (PCIe User Physical Function) Driver Interfaces 
 xclmgmt (PCIe Management Physical Function) Driver Interfaces 

QDMA: 
 BSC ONIC version (Ethernet over PCI) 

XDMA: 
 BSC version 

UART and USB: 
 Picocom (UART client) 

Other software packages installed 

Installed several software packages: 
 OmpSs toolchain (boost, boost-devel, hwloc-devel, numactl-devel)  
 gcc and g++ 
 ninja, clang and lld 
 gfortran 
 More under user’s demand 

Complementary to the information above, udev rules were introduced to allow user access to 
different devices (DMA, PCIe, and USB). 
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Figure 33. Installed packages on FPGA nodes 

An overview of all the packages installed in all FPGA nodes (fpgan[01:12]) is shown in Figure 
33. 

Custom requirements 

Besides the standard Vitis flow, the most basic use case for an FPGA cluster is to use      custom 
bitstreams from scratch, which means having to complete the FPGA programming step. These 
custom bitstreams intend to have one of two basic options of PCIe configuration: QDMA (used 
in MEEP project) and XDMA (used in EPI project). Accordingly on the host side two kinds of 
PCIe drivers should be used to interact with custom bitstreams. For both of them the QDMA 
and XDMA drivers provided by Xilinx are taken as reference: 
https://github.com/Xilinx/dma_ip_drivers. 

5.2.3. Networking and usability 

Figure 34 shows the networking structure of the MEEP system, and the interaction among its 
different elements. The figure below represents a schematic of the envisioned final system; in 
which users connect to the BSC LAN and access to any of the resources of the machine via 
Slurm. The elements shown in the figure correspond to the ones described in Table 12.  
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Figure 34. General schematic of the network designs and interactions 

There are specific elements only accessible to Operations (yellow boxes{fpgan[01:12], 
fpgavmhost01}), and others to final users (orange boxes {fpgalogin, fpgac[01:04], 
fpgavm[01:12]f[01:08]}).  

The flow is as follows:  

 The large-scale FPGA machine is connected to the BSC LAN network (blue cloud: 
Eth:large-scale FPGA machine). 

 As part of the system, Operations team has: 
o A host node (fpgavmhost) to control the status of each of the FPGA cards of the 

system, and it also allows sysadmin operations through the network. 
o 12 FPGA nodes to control each of the nodes to which users can operate.  

A user connects to the machine through the fpgalogin node via ssh, allocating resources for 
his operation and configuring his requirements via Slurm. The system will assign him the 
requested resources, if there are any available, after configuring the resources. This process 
implies creating a VM per each of the resources requested (fpgavm<node>f<fpga>).  

Sysadmin responsibilities: Operations team  

Operations team manages the infrastructure (management, maintenance, support, and 
software installation). The team is responsible for:  

 Creating a generic operator in the fpgan[01:12] for allowing users to access. 
o Operation manages the sudo requirements.  
o Operation develops scripts to manage FPGA tasks. 

 Developing the prologue and epilog of Slurm; trying to include all common tasks and 
needs as part of the root definition. 

 Enabling basic functionalities for users. In this sense, for those operatives that need to 
be done by the user, the team will develop: 

o Stub script with setgid to some special group that has access to ssh private 
key of operator. 
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o The stub script will ssh to the associated fpgan[01:12] node and perform a 
specific action only to its FPGA. 

Machine operative: User level 

Figure 35 represents the first scenario that was enabled to allow to the FPGA team accessing 
to the system. In the first stage, only one node (fpgan01) was configured, and direct access to 
each of the FPGAs was permitted via ssh; with no slum intervention. This facilitated that 
several users could execute small experiments simultaneously on specific FPGAs within the 
same node.  

To facilitate users the possibility of transferring files from/to external repositories to/from the 
machine, two different NFS servers were configured: 1) One for the hosts (fpgalogin & 
fpgan[01:12]), and 2) one for the FPGAs. The relationship among them is shown in Figure 34.  

 

Figure 35. User interactions and features in Rack1, FPGA node 01 

For security reasons there is not any bridge between NFS systems (hosts, and FPGAs). That 
means that users must do a secure copy (scp) of files into the FPGA to operate with them.  

A welcome message is shown in the terminal when a user login in the machine (Figure 36). 
Then, to do automation, the mapping of different FPGA interfaces (PCIe slot, USB UART, USB 
JTAG, Ethernet IP) to each other is required. The mapping per node is collected in a special file 
found in the path: /etc/motd that might be checked after login. Figure 37 shows an example of 
the FPGA interconnection mapping, for the FPGA node 03 (fpgan03).  
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Figure 36. Welcome message when login in MEEP system 

This table below includes the information for each of the FPGAs of the node. First column 
indicates each of the cards (fpgan03f[01:08]), the chassis PCIe port (Chassis), the serial number 
that identifies univocally each card (FPGA serial), the MAC address for the PCIe bus (PCIe Bus), 
the port assigned to the in the USB Hub (USBPort), link to use the UART (ttyUSBx), and the rest 
of the columns are related to networking information. All FPGA cards are connected to the 
100GbE switch by using the QSPF0 (QSFP0), directly connected to its immediate neighboring 
FPGA using the QSFP1 (this is only true in Rack1) (QSFP1), and last two columns are related to 
the PCIe using ONIC driver. QDMA onic column identifies univocally the PCIe to allow 
communication between the FPGA and its corresponding host; whereas the last column (onic 
IP) refers to the MAC address for enabling Ethernet over PCIe. 

 

Figure 37. FPGA card interconnection mapping 
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5.2.4. SLURM configuration 

Once the first working nodes were stable, in terms of configuration, Operations team 
configured those to be accessed via SLURM. That process required the configuration of the 
prolog and epilog files to define what kind of actions need to be done when one user request 
resources, as it is depicted in Figure 38. 

 

Figure 38. Generic SLURM workflow 

SLURM constraints 

Until now, and based on our experience, there are two main constraints that need to be 
considered when a user wants to use the large-scale FPGA system: 

 Ethernet link speed (eth:{auto, 10g, 100g}) 
o Configures all switch ports of the FPGAs in the node to the given speed. 
o Please note that ALL cards have to be configured to the given Ethernet speed. 

 DMA driver: (dma{none, xdma, qdma}) 
o Loads the given kernel module. 

These constraints might be used separately or together, depending on users’ needs. An 
example of this is shown in Figure 39. Constraints are given as a comma separated list with the 
--constraint flag at the beginning of the jobscript. Examples below: 

# One constraint: Ethernet at 10GbE 
--constraint=eth:10g 

# One constraint: qdma driver 
--constraint=dmaqdma 

# Two constraints: Ethernet at 100GbE and qdma driver 
--constraint=eth:100g,dma=dmaqdma 

Figure 39. Constraints setup 

Each combination of key-value pair of constraints must be included in the slurm.conf file: 

NodeName=fpgan-[01-12] 
Features=eth:10g,eth:100g,dma:none,dma:xdma,dma:qdma 
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Users can only include valid job constraints, otherwise the system will show an error message 
as a response: 

$ salloc -N 1 -t 1-00:00 --constraint=dma:custom_driver 
salloc: error: Job submit/allocate failed: Invalid feature specification 

If there are conflicting constraints in the same job submission only the latest applies. For 
example, --constraint=dma:none,dma:dmaxdma will set up the XDMA driver. 
There is still one open ticket support with Lenovo, related to the reset of the FPGA to move the 
FPGA to an idle state without forcing a node reboot every time a new user is going to use it. 
This action will be included as part of the SLURM epilog. 

Use case 1: One developer per node 

Developers can reprogram the FPGAs with whatever bitstream they want and talk to the 
boards either via PCIe and/or UART. This use case is the same as the environment that was 
used for running the bring-up, but with two major differences: 

1) Only one user is in the node at the same time and accesses via SLURM. 
2) Users cannot load/unload kernel modules, they request the DMA driver as a job 

constraint. This removes the need for sudo on certain scripts. 

5.2.5. Infrastructure as a service (usability) 

As shown in Figure 38, the MEEP system has been configured to allow a flexible use from the 
users’ perspective. With the current configuration, a user might use the infrastructure to 
implement one of the three following scenarios: 

 Single FPGA design (regular accelerators/SDV/silicon prototyping) 
 Multiple concurrent FPGA designs (several hardware kernels synthesized and 

managed by OmpSs/AIT) 
 Multi-FPGA designs (scaled-up above cases) 

From the design perspective, the MEEP infrastructure envisions supporting any of the 
scenarios depicted in Figure 40. Two of the three have been tested as part of the bring-up 
process. More specifically, designs with one FPGA and multiple FPGAs, with one design per 
FPGA, have been tested. The third scenario has not been tested because we do not have any 
design with that capability or need yet.  
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Figure 40. Design configurations allowed in MEEP system 

It is important to mention that there are not direct cables connected among all the FPGAs to 
support all topologies. However, those could be implemented though the ethernet switch.  

5.2.6. Configuration progress and status 

Regarding the infrastructure, as it is shown in Figure 41 all nodes are accessible via SLURM. 
The image depicts an specific moment in which the first FPGA nodes (fpgan[01-02]) are not 
available (rebooting process), the next two FPGA nodes are being used (fpgan[03-04]), the 
rest of them are idle  (fpgan[05-12]). 

 

Figure 41. Slurm partitions (one per node) 

A more detailed description of the user access hierarchy is represented in Figure 42, although 
the image only shows Rack1. However, this is the same for Rack2, except for the point-to-point 
communication of pairs of FPGAs using QSFP1; which is only available in Rack1 for the 
moment. A user accesses the compute node with 8 FPGA cards through two level ssh: 1) access 
to the login node, and 2) access to the FPGA node. The access is enabled and controlled by 
SLURM. All nodes share a common NFS. Gitlab access and SLURM control are available at the 
first-stage FPGA login node. In addition, Table 14 summarizes the current features enabled for 
a user when using SLURM. 
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Figure 42. Hierarchy of user access to FPGA nodes in Rack1 

Table 14. Summary of user features  

 
Feature Comment 

❌ Load/Unload kernel modules Done in the SLURM prolog 

✅ R/W permissions to ttyUSB devices Already implemented with udev rules 

✅ R/W permissions to PCIe remove and rescan files Already implemented with udev rules 

✅ R/W permissions to /dev/xdma* Already implemented with udev rules 

✅ Any bitstream can be programmed Same as today 
The wrong bitstream could break the node 

5.3 Capabilities and bring-up 

The bring-up step requires validating the correct behavior of the whole infrastructure, and all 
its individual components (nodes, switches, processors and FPGAs). This step must guarantee 
access to the infrastructure for its future exploitation by the users and check all the necessary 
tools are available to ensure the appropriate usability of the resources. An acceptance process 
has been prepared for this purpose. More details on the status of the acceptance are in Table 
15. 
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Table 15. Checklist with experiments to be included as part of the bring-up 

Acceptance tests Status 

Checking components 

All nodes (hosts) are alive and reachable: 
Rack1: [fpganode01:fpganode06] 
Rack2: [fpganode07:fpganode12] 

 
 
 

All switches are alive and reachable 
Rack1: fpgaibsw1 
Rack2: fpgaibsw2 

 
 
 

All FPGAs are alive and visible (xbtest / xbutils) 
fpganode01|f01:f08 – fpganode12|f01:f08 

 
 

Checking FPGA programmability 

All FPGAs programmability using JTAG 
fpganode01|f01:f08 – fpganode12|f01:f08 

 
 

All FPGAs serial output using UART 
fpganode01|f01:f08 – fpganode12|f01:f08 

 
 

Checking FPGA connectivity (Ethernet and FPGA-to-FPGA) 

Point-to-point communication using direct QSFP links (cabling) (ibert) - 

Point-to-point communication using Ethernet over QSFP1 between FPGAs in the same 
node (Only Rack1) 

Rack1: fpganode01:06|f01-f02 
f03-f04 
f05-f06 
f07-f08 

 
 

 
 
 
 

FPGA-to-FPGA communication through the switch using Ethernet over QSFP0 
between FPGAs in the same or different nodes, but same rack  

FPGA-to-FPGA communication through the switch using Ethernet over QSFP0 
between FPGAs in different racks  

FPGA-to-FPGA communication using Aurora over QSFP1 between FPGAs in the same 
node (Only Rack1)  

Host-to-FPGA and FPGA-to-host communication using PCIe (no Ethernet)  

Host-to-FPGA and FPGA-to-host communication using Ethernet over PCIe  

Checking toolchain, software and EDA tools 

Access to EDA tools  

Loading a bitstream with a functional design and booting Linux (OpenSBI)  

Configuring several FPGAs with the same bitstream  

SLURM installation, configuration and exploitation at user level  

CICD flow from Gitlab repo to large-scale FPGA machine (Optional)*  
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RISC-V toolchain compatibility (Optional) - 

SW toolset installation, compatibility, and correctness (OpenMP, MPI) (Optional) - 

 
The list of tests has been organized into four main categories, where the three first are the 
most relevant for ensuring the correctness of all hardware components and the possibility of 
using those for MEEP and future projects:  

1) Checking components: The goal of this set of tests is to verify the correctness of each of the 
hardware components of the system: cabling, nodes, power supply, cooling, switches, and 
FPGA cards. 

2) Checking FPGA programmability: These tests aim for ensuring the possibility of using the 
FPGA cards by being able to: a) load a bitstream via JTAG, and b) reading serial outputs of 
the tasks executed on the FPGA using the UART. In the end, all these tests guarantee the 
correct behavior and configuration of the USB Hubs. 

3) Checking FPGA connectivity: Ensuring the networking capabilities of the system is 
necessary to offer the targeted services to be offered by the large-scale FPGA system. Thus, 
validating the networking inter and intra nodes (from/to the FPGAs) is mandatory. This 
includes: PCIe FPGA, FPGAFPGA via QSFP1, and through the switch (no matter if 
the FPGAs are in the same node, in the same Rack but different node, or in different Racks.  

4) Checking toolchain, software, and EDA tools: Most of these tests are optional for the bring-
up process. However, they have been considered to start testing, and evolving our tools to 
deal with the complexity of a large-scale system as this. 

Some tests that have been removed from the list for the following reasons:  

 Point-to-point communication using direct QSFP links (cabling) (ibert): The networking 
tests were much more exhaustive than this one, and consequently we decided to avoid 
redundancies and simplify the experiments to the most sophisticated ones. 

 RISC-V toolchain compatibility & SW toolset installation, compatibility, and correctness 
(OpenMP, MPI): both tests were set as Optional since they are not mandatory for the 
bring-up. These are the kind of checks that are nice to test to demonstrate some of the 
functionalities of the system as software development vehicle. In this sense, these tests 
will be run soon. 

In the case of the CICD flow from Gitlab repo to large-scale FPGA machine test, BSC team 
developed initial tests to check the possibility of pointing to the large-scale FPGA machine as 
target where to deploy a bitstream generated through the FPGA flow. The mechanism was 
validated, although not put in production yet. 

5.3.1. Xilinx tests 

The hardware validation of all FPGAs cards has been done using some of the tools provided by 
the vendors (AMD/Xilinx) for this purpose; more specifically: xbutils and xbtest. These consist 
of running a set of tests in all FPGA cards to check their correct status.  

1) xbutils provides basic validation for all the U55C FPGA cards connected to one PCIe 
node. 
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2) xbtest: provides more advanced tests and validates the host server environment under 
a variety of stress conditions. The application monitors the system and validates the 
functionality of essential hardware and software components of the platform. 

Once both racks (Rack1 and Rack2) were fully connected (cabling and networking) and 
configured, it was required to do a firmware (FW) upgrade. The FW implements the logic to 
interface the Satellite Controller (SC), and the SC itself. A mechanism that permits the 
measurements. Figure 43 shows the output of all FPGAs of the large-scale machine (96 FPGAs) 
after running a firmware upgrade validation testing using xbutil (FW version 2023.1). 

 
Figure 43. Firmware upgrade and validation testing, in all FPGAs, using xbutil 

The output shows each of the cards of the system per node, starting from FPGA node 01 
(fpgan01) (Figure 43, left column), going through each of the eight FPGA cards, to the last FPGA 
card of FPGA node 12 (fpgan12) (Figure 43, right column). 
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Figure 44. Firmware upgrade and validation testing detail on fpgan01 

Figure 44 depicts a detailed output of the validation tests executed (Test 1 to Test 7) in one 
particular node, in this case fpgan01.  

After a FW update, a cold reboot is needed to guarantee the new changes have been applied to 
the system. Then, the following commands are useful to validate the process: 1) xbmgmt 
examine, and 2) xbutils examine. Having Xilinx Platform programmed to FPGAs after cold 
reboot xbmgmt and xbutil utilities report all 8 FPGA cards as 2 PCIe devices per each (Figures 
45 and 46). These results validate a successful FW update. 

 

Figure 45. Output of xbmgmt examine command on fpganode09. 

Figure 46. Output of xbutil examine command on fpganode09. 
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Some more details about Xilinx Platform and about the last loaded validation kernel 
(bandwidth.xclbin) for a particular card at PCIe slot 1 are provided by xbutil examine -d 
000:34:00.1 in Figure 47. 

 

Figure 47. Output of xbutil examine for a particular FPGA card at PCIe slot 1 on fpganode09 

Xilinx Platform allows users to run validation tests for a particular FPGA card by xbutil 
validate command (Figure 48). This is performed through loading to the FPGA dedicated 
hardware kernels, which run a set of basic health tests. Such validation procedure has been 
successfully run for all 96 FPGA cards of the FPGA cluster (Test 1 to Test 12). 
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Figure 48. xbutils validate of FPGA card in PCIe slot 1 in fpganode09. 

In Figure 49 default (post cold reboot) configurations of PCIe for cards in slots 3 and 4 are 
presented with activated two types of PCIe drivers coming with default XRT distribution: xocl 
(OpenCL for Vitis hardware kernels) and xclmgmt (FPGA card management). 
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Figure 49. Post cold reboot PCIe configurations for FPGA cards at PCIe slots 3 and 4. 

5.3.2. Custom tests 

Vendor tests guarantee the correctness of the FPGA cards of the system. But it is still pending 
to validate the basic functionality of the system, which is critical for ensuring the possibility of 
using the machine for the targeted functionalities: 1) being used as a pre-silicon validation 
platform for hardware developers, and 2) being used as a software development vehicle for 
software developers. The correctness of the basic features for succeeding on these 
functionalities have been validated by executing the BSC custom tests summarized in Table 16. 

Table 16. Summary of BSC custom tests 

 List of BSC custom tests 

Basic FPGA card peripherals 

 Access to local BSC repositories (in Gitlab) 
 USB Hub connection 

o JTAG programming,  
o UART access,  

 PCIe 
o QDMA tests,  
o XDMA tests,  

 Bitstream deployment 

Node Behavior 
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 Programming several times, the same FPGA, with different bitstreams 
o RISC-V accelerators mapping (SpAcc prototype, EPI@SDV prototype) 
o Networking tests 

 Booting Linux (OpenSBI) 
 RISC-V based (FPGA card – FPGA node (Host) communication through PCIe) 

o FPGA – host (no Ethernet) 
o FPGA – host (Ethernet over PCie)  

Networking 

 Point to point communication (cabling using QSFP1)  
o Ethernet tests with 100GbE point-to-point  
o Ethernet tests with 100GbE via switch 

 The first set of tests, Basic FPGA card peripherals, are intended to check the 
functionality of basic I/O peripherals required for programming, establishing basic 
communication between the FPGA and host node, and checking output results using 
the UART. All these tests have required an intense development of BSC tools4 to allow 
mapping automation for the following tasks over specific FPGA cards (FPGA card #): 

o Programming (fpgajtag). Allows programming an FPGA via JTAG.  
o QDMA actions (pcienum). Used for executing actions such as: remove, qmax, 

add, dma-ctl. 
o USB UART (/dev/ttyusb). Its function is to enable the UART communication 

using a specific USB port. 
o Ethernet over PCIe: Allows activating Ethernet over PCIe.  

 The second set of tests, Node behavior, were intended to ensure that different designs 
could be deployed on the large-scale FPGA system without any difficulty. In this case 
two different accelerator designs were used: 1) ACME accelerator from MEEP project5, 
and 2) the SDV design from EPI project6.  

o In any of the cases, FPGA users were able to execute the following sequence of 
instructions, as it is shown in Figure 50:  

 Program an FPGA in fpgan01 
 Rescan PCIe devices. 
 Check PCIe devices. 
 Set a device with the proper drivers. 
 Offload Linux kernel to the FPGA. 
 Send start signal to the RISC-V core in the FPGA. 

 Observe Linux booting via UART (ttyUSB7) 

 
4 Gitlab fpga-tools repository: https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/fpga-tools/-
/tree/develop/fpga_cluster 
5 MEEP Project: www.meep-project.eu 
6 EPI project: www.european-processor-initiative.eu  
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Figure 50. Linux Booting of a RISC-V based design on fpgan01 

Moreover, the team has enabled several interesting features to exploit the system:  

 ONIC driver: is being improved to add extra features like enabling Ethernet over PCIe 
from one node to multiple FPGAs, as part of the same node.  

 Coexistence of QDMA and XDMA drivers in the same node. 
 Coexistence of 10GbE and 100GbE Ethernet throughputs in the same node. This 

characteristic makes possible to have different FPGAs in the same node with the switch 
configured in a different way; some FPGAs at 10Gb, and others at 100Gb. 

In case when custom bitstreams are programmed, accordingly a custom QDMA or XDMA host 
driver is activated to support PCIe functioning. In Figure 51 the changed PCIe configuration is 
presented for card at slot 3 after programming QDMA based custom bitstream with activation 
of custom qdma-pf.ko kernel module. 
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Figure 51. Changed PCIe configurations for FPGA cards at PCIe slot 3 after its programming with 
custom bitstream and activation of custom PCIe QDMA driver. 

Experimentally it has been checked that different types of PCIe drivers may coexist 
simultaneously with each other, and a user is able to reprogram different FPGA cards with 
bitstreams having arbitrary PCIe configurations. But generally, after such reprogramming a 
user is required to do a hot reboot of the host (FPGA state is kept untouched in that case) in 
order the OS can do PCIe bus enumeration and device address assignment. During such a 
procedure the OS extracts corresponding information from the Base Address Register (BAR) 
per each PCIe device. Configuration of BAR(s) is a part of PCIe IP configuration while 
implementing a bitstream. 

An option to avoid a host reboot is to make the PCIe device remove/rescan operations7. This 
option is chosen as the basic one for FPGA cluster usage. But it assumes previously done 
preallocation of resources on a specific PCIe port during PCIe enumeration. Even more, this 
preallocation should satisfy the rule that it is done with BAR address space not less than BAR(s) 
in further reprogrammed custom bitstreams. In most cases Xilinx Platform bitstreams 
initialized after cold reboot satisfy this rule, but in order to have less restrictions for custom 
bitstreams, a special bitstream having big enough BAR configuration 512 MB is created and is 
planned to be programmed to FPGAs before rare cases of FPGA cluster node reboot. 
In order to do automation the mapping of different FPGA interfaces (PCIe slot, USB UART, USB 
JTAG, Ethernet IP) to each other is required. The mapping is collected in special file /etc/motd 
per a node showed at initial login, as depicted in Figure 52: 

 
7 https://stackoverflow.com/questions/32334870/how-to-do-a-true-rescan-of-pcie-bus  
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Figure 52. FPGA card interconnection mappings. 

Further this mapping is used in automation scripts for FPGA programming, interactions with 
FPGA through PCIe, commands in UART terminal, Ethernet IP assignments. 

In addition, an experimental python script (env.py)  provides several functions to help on the 
operation and testing of the cluster. It can be executed with an interactive python console 
(python3 -i env.py). We list the main functions of the script below. 

The fpga_dashboard function lists the details of all the FPGA accelerators connected to the 
node. It outputs details of the used PCIe slots, the physical and logical USB connections, the 
kernel drivers used to interact with the boards, the tty interface to interact with the 
accelerators’ UART, the FPGA serial numbers, and details about the Ethernet-over-PCIe 
interfaces. Below you can see an example output of the function. 

 >>>fpga_dashboard() 

| FPGA |  PCI  | Board | kernel Driver   | Phy. USB | Log. USB | tty      | Serial       | qx | onic             | 
+------+-------+-------+-----------------+----------+----------+----------+--------------+----+------------------+ 
|    0 | 34:00 | u55c  | qdma-pf         | 1-6.5    | 1-10     | ttyUSB22 | XFL1VYH4S0UR | 0  | onic52s0f0 [··]  | 
|    1 | 33:00 | u55c  | qdma-pf         | 1-6.6    | 1-11     | ttyUSB26 | XFL1DF0P10SS | 0  | onic51s0f0 [··]  | 
|    2 | 19:00 | u55c  | qdma-pf         | 1-6.7    | 1-12     | ttyUSB30 | XFL1KEQBL4IM | 0  | onic25s0f0 [··]  | 
|    3 | 1A:00 | u55c  | qdma-pf         | 1-6.4    | 1-8      | ttyUSB14 | XFL105L3VVVU | 0  | onic26s0f0 [··]  | 
|    4 | CD:00 | u55c  | qdma-pf         | 1-6.3    | 1-6      | ttyUSB6  | XFL1BZIEUP0P | 0  | onic205s0f0 [··] | 
|    5 | CC:00 | u55c  | qdma-pf         | 1-6.2    | 1-5      | ttyUSB2  | XFL1L43EGBAE | 0  | onic204s0f0 [··] | 
|    6 | B3:00 | u55c  | qdma-pf         | 1-6.1.4  | 1-9      | ttyUSB18 | XFL1QTI2Z0CV | 2  | onic179s0f0 [UP] | 
|    7  | B4:00 | u55c  | qdma-pf          | 1-6.1.3   | 1-7       | ttyUSB10  | XFL1RIVW202O | 2  | onic180s0f0 [UP] | 

Some of the information listed is statically written in the script and it is obtained in a 
configuration step that requires scanning the system to collect all the details. To assist this 
manual process, we also provide a function scan_new_node that scans and collects relevant 
information of the PCIe/USB/UART/and kernel information. Below you can see an example 
output of the function. 
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>>> scan_new_node() 
Checking FPGA serials 
Hostname: fpgan01 
FPGA serials  
['XFL1KEQBL4IM', 'XFL1DF0P10SS', 'XFL1VYH4S0UR', 'XFL105L3VVVU', 'XFL1BZIEUP0P', 'XFL1L43EGBAE', 'XFL1QTI2Z0CV', 
'XFL1RIVW202O'] 
Add the following line to fpga_serial variable: 
'fpgan01':['XFL1KEQBL4IM', 'XFL1DF0P10SS', 'XFL1VYH4S0UR', 'XFL105L3VVVU', 'XFL1BZIEUP0P', 'XFL1L43EGBAE', 
'XFL1QTI2Z0CV', 'XFL1RIVW202O'] 
Checking PCI slots 
...by now PCI slots are hardcoded 
Checking USB cables 
{(1, 11): '1-6.6', (1, 8): '1-6.4', (1, 1): 'usb1', (1, 5): '1-6.2', (1, 9): '1-6.1.4', (1, 2): '1-1', (1, 12): '1-6.7', 
(1, 10): '1-6.5', (2, 1): 'usb2', (1, 6): '1-6.3', (1, 3): '1-6', (1, 4): '1-6.1', (1, 7): '1-6.1.3'} 
Add the following line to usb_ports 
'fpgan01':['1-6.7', '1-6.6', '1-6.5', '1-6.4', '1-6.3', '1-6.2', '1-6.1.4', '1-6.1.3'] 

After identifying the hardware, the user typically executes a sequence of operations to bring 
up a running SDV system in any of the FPGA accelerators.  First, a bitstream with the hardware 
design must be programmed into the FPGA. This can be done with the vivado_download 
function. 

Once the SDV is configured in the FPGA accelerator, the user needs to set up the QDMA 
channels to be able to communicate with the SDV. This is done by the create_qdma_queues 
function. 

Depending on the operating system to run on the SDV (either Buildroot or Fedora), different 
steps are needed.  Buildroot is simpler, it only requires placing the binary image that combines 
OpenSBI, Linux Kernel, and Buildroot distribution in the main memory of the system before 
issuing a reset of the processor to start the booting process. This can be done with the 
boot_buildroot function. On the other hand, Fedora is slightly more complex as it requires 
using an additional persistent memory file-system that is placed into an reserved area of the 
HBM memory. The file-system can be downloaded with the download_fedora function. Then, 
the download of the image containing the OpenSBI and the Linux kernel, and a reset to the 
processor to start the booting process can be performed with the boot_fedora function.  

Once the SDV processor is started it is interesting to analyze the boot log messages that are 
outputted through the UART interface. A serial terminal connection with the SDV can be 
established with the picocom function, which calls the picocom Linux application. 

Some additional functions are provided to help with the configuration of the SDV parameters. 
For instance, the init_eop_by_uart function is used to configure the details (MAC and IP 
address) of the Ethernet-over-PCI device of the SDV. Similarly, the init_qsfp_by_uart 
function is used to configure the details (MAC and IP address and routing) of the Gigabit QSFP 
Ethernet interface.  

5.4.  Use Cases 

5.4.1. b8c SpMV accelerator 

Sparse-matrix dense-vector multiplication (SpMV), computing 𝑦 = 𝐴 × 𝑥 where y and x are 
vectors and A is a sparse matrix, is a key kernel in many scientific applications. However, when 
using the de-facto sparse matrix representation (CSR), and for reasonably large problems, the 
random access pattern on x accesses penalizes performance due to the high number of cache 
misses generated by this sparse behavior. Under these circumstances, FPGAs and their ability 
to generate ad-hoc memory hierarchies for specific problem types arise as an interesting 
alternative to accelerate SpMV computations. 
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This section describes a real use-case of the MEEP FPGA-Cluster in order to achieve that goal. 
The starting point is a single FPGA design including multiple hardware kernels that 
implements an fpga-optimized version of SpMV. These kernels have been synthesized using 
AIT and, at run-time, are managed by OmpSs@FPGA. 

This SpMV implementation, developed under the MEEP project and named b8c (block-8-
compress), is specially tailored for FPGAs. It makes use of different techniques to implement 
parallel memory access in all the memory data involved in the computation: x, y and A. 

Figure 53. Example of a matrix representation in both CSR and b8c. 

To be able to do so, b8c transforms the original matrix and replaces its CSR representation by 
its own, b8c representation. This b8c representation relies on the “compression” of the original 
matrix in order to generate a more dense representation. The “compression” is performed on 
a block basis: the original matrix is divided in blocks (or tiles) of 𝑁 ×  𝑀 (rows/columns) 
elements, where N and M are determined by the capacity of on-chip memory assigned to each 
kernel instance to store x and y segments. Each block is further subdivided into 8-column 
slices. Then, each slice is processed to “compress” it. The compression algorithm tries to merge 
as many slice rows as possible, creating a new structure named super-row. A super-row, then, 
is a set of 8 contiguous elements in the same slice. There are three conditions to be able to 
merge a slice row into an already generated super-row: 

1. They must be at a distance less or equal than a parameter “d” that is determined by the 
number of bits configured to be able to store this information. 

2. They must “belong” to y positions that do not clash modulo “a”, being “a”, again, a 
configuration parameter that indicates how many row-accumulations can be 
performed in parallel. The only exception to this is that both (the slice row and the 
super-row update the same y position). 

3. They must not have any common x index. 

For a slice row, it can be merged with any already generated super-row given that the three 
previous conditions are met. If they are not met, the slice row constitutes its own super-row, 
which will be available to try to merge additional slice rows into it. 
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Figure 53 depicts a simple example of a matrix transformed from its CSR representation into 
a b8c representation. As can be observed, the b8c structure includes additional meta-data 
needed to identify the original row/column of each element in the new super-row structure. 

Once transformed into this b8c format, the matrix can be processed using the b8c accelerators 
leveraging all of the representation characteristics that, fruit of a co-design process, are 
tailored for its own hardware architecture. Figure 54 shows a simplified scheme of a b8c 
hardware accelerator. Given a (sub)matrix (or block) represented in b8c format, this 
accelerator can process in the following sequence: 

Preload x (source vector) values into local memory (on-chip memory) 

Preload y (destination vector) values into local memory 

Stream-process A (matrix) values (in its super-row form) directly from off-chip memory 
(DDR/HBM) 

i) For each super-row: 
1) Read the corresponding x values 
2) Perform partial products (𝐴 × 𝑥) 
3) Group/accumulate partial products that update the same row 
4) Update y with the result of the previous step 

ii) Update y values on off-chip memory 
Steps a, b and c can be skipped if the same accelerator already has the information needed (a,b) 
or will use the same information to process the next block (c). 

Figure 54. b8c accelerator hardware scheme. 

The on-chip memory that stores x and y in the accelerator is partitioned in a cyclic fashion 
using the same parameters as the b8c encoding of the matrix. In this way, up to 8 x values can 
be read in parallel without collision and up to “a” (usually 4 or 8) values of y can be 
read/updated in parallel. The accelerator is fully pipelined and thus, it is able to process one 
super-row per cycle without stalling. This translates to a peak performance, according to SpMV 
arithmetic, of 16 FLOPS per cycle. 
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The FPGA design of this accelerator, including 16 b8c SpMV kernels, can be deployed in the 
MEEP cluster leveraging the mechanisms described previously. In single-accelerator mode, a 
single FPGA is used to process any given matrix.  In multiple-accelerator mode, a set of FPGAs 
can be allocated and loaded with the same bitstream containing the SpMV b8c kernels. This set 
of FPGAs, then, can be used to process each one, a sub-matrix of the original matrix, allowing 
multi-FPGA b8c SpMV computations. 

5.4.2. FPGA and ACME designs: Proof of concept 

In addition to the bring-up tests, where different MEEP designs were used (Table 17), this 
section describes how MEEP system has been used to put together all MEEP project 
developments from WP4, WP5 and WP6. 

To demonstrate the achievements of the project different tests have been executed, using as a 
baseline the execution environment shown in Figure 55.  

 

Figure 55 Execution environment in the MEEP system  

All the tests have been executed programming all the FPGAs with one of the released 
bitstreams: ACME EA 4H2V. This bitstream includes the ACME accelerator (Lagarto Hun+VPU 
with 2 lanes) design and the FPGA Shell with HBM, PCIe and Ethernet. The main characteristics 
of the MEEP system are included in Table 17. 

Table 17. Execution environment setup in MEEP system 

Item Details 

Execution environment 8 nodes (fpganode02: fpganode09) 

MEEP system nodes Login node: fpgalogin1 
Compute nodes: fpganode02: fpganode09 

Total number of FPGAs 
8 FPGAs/node  
64 FPGAs in total (fpganode02/f8 to fpganode09/f71) 

MAC Range using QSFP0 10.5.1.159 : 10.5.1.222 (fpganode02 : fpganode09) 

 

Execution examples:  

 Ping to all nodes and FPGAs. Connected to fpganode03 and pinging to all FPGAs (from 
fpganode02/f8 to fpganode09/f71) 
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 Get the Ethernet/MAC addresses IPs for several nodes. User connected to the FPGA 
login node (fpgalogin1) and get the MAC addresses of all the FPGAs from node 
fpganode02 to fpganode09. 

 Run an MPI Hello world on 64 nodes. 

 Booting Fedora on ACME EA 4H2V. 
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6. Conclusions 

WP6 was developed with three goals:  

 Preparing a platform definition document, including the chosen emulation system, HW 
specifications for the FPGA platform, RTL, FPGA Shell and other required IPs. 

 Implementing the FPGA Shell, including PCIe interface drivers and IP, HBM interface, 
and other IP to enable inter-FPGA communication. 

 Implementing FPGA core elements (scalar core, vector core, caches, ring) and 
mapping, placing and routing toon the targeted FPGA platform, yielding the final 
acceleration emulator prototype.  

The first goal was fully covered in deliverable D6.1 Emulation platform specification.  The 
remaining two goals have been developed in parallel. On the FPGA Shell, the project delivers a 
flexible, scalable, configurable, and extensible shell, including communication IPs such as HBM, 
PCIe, and Ethernet. Moreover, a set of tools, including the FPGA flow, have been developed with 
the aim of simplifying the exploitation and utilization of FPGAs by hardware and software 
developers.  

The MEEP FPGA Shell, and the toolbox have been used to achieve the third of the proposed 
goals. Different configurations of the ACME accelerator have been implemented and run on 
both MEEP infrastructures, MEEP servers (Phase 1) and MEEP system (Phase 2).   

A very interesting path has been created among the activities developed in different work-
packages, where similar configurations of ACME accelerator have been tested running AXPY 
benchmark. On one hand, Coyote simulator executed a version of ACME design based on ACME 
specification (deliverable D4.1). RTL run simulations with the latest ACME design, a simplified 
approach to the envisioned ACME accelerator. The software team used several configurations 
that design as SDV, and finally FPGA synthesized and implemented the final released version 
of the RTL ACME together with the FPGA Shell (ACME EA). A collection of experiments is 
summarized in Table 18.  

Table 18. Collection of experiments related to ACME accelerator across WP4, WP5, WP6  
WP /Task ACME design ACME details Experiment  Results 

WP4. Coyote 4V-1C-1M 
Configuration 
based on ACME 
specs 

Benchmark: AXPY 
Exec. modes:  

epi-mode,  
acme-classic,  
acme-mode 

D4.4   
Section 3.4.2 

WP4. RTL ACME 
1H4G1M 

RTL design: Proof 
of concept 
(simplified 
version of ACME 
specs) 

Benchmarks: 
AXPY 
MATMUL 
Bolt65 

Exec. modes:  
classic-mode,  
acme-mode 

D4.3 
Section 2.3.3 

WP6. FPGA ACME EA 
4H2V CICD and synthesis D6.4 

WP5. SW  ACME EA 
4H2V 

Benchmarks:  
AXPY 
GEMM  
SPMV  
SOMIER 

Exec. mode: classic-mode 

D5.4 
Section 7 
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6.1. Key Performance Indicators (KPIs) 

Table 19 contains the Key Performance Indicators (KPI) set out for the MEEP infrastructure in 
Deliverable D4.1. The KPIs cover WP6 components, and functionalities developments, but also 
support for the RISC-V community, including the ACME accelerator.  

Table 19. General KPIs of the MEEP infrastructure  

Goal KPI Objective 

FPGA-based 
Platform 
Infrastructure 

FPGA-based infrastructure with many 
FPGAs per server and 100GbEthernet 
communication. 

Enabling remote connection to the infrastructure, 
and capability for using its resources according to 
the user needs: 

- Accelerator topology, 
- Resources allocation: 

- one node & one FPGA 
- one node multiple FPGAs 
- multiple nodes and multiple 

FPGAs/node 

Support to emulate a single core accelerator 
design in one FPGA using the MEEP Shell 
for host communication. 

. Bitstream generation using the FPGA Shell + one 
instance of the VAS Tile core. 

. Accelerate the execution of one MEEP targeted 
HPC application in one FPGA. 

Support to emulate a many-core accelerator 
in one FPGA using the MEEP Shell for the 
host communication. 

. Bitstream generation using the FPGA Shell + one 
instance of the VAS Tile. 

. Accelerate the execution of one MEEP targeted 
HPC application in one FPGA. 

Support to emulate a many-core accelerator 
in multiple FPGAs, physically connected to 
the same node, using the MEEP shell for the 
host and FPGA2FPGA communication. 

. Bitstream generation using the FPGA Shell + one 
instance of the VAS Tile core. 

. Accelerate the execution of one MEEP targeted 
HPC application in, at least, two FPGAs 

Support to emulate a many-core accelerator 
in multiple FPGAs, physically connected to 
different nodes, using the MEEP shell for 
the host and FPGA2FPGA communication. 

. Bitstream generation using the FPGA Shell + one 
instance of the VAS Tile core. 

.  Accelerate the execution of one MEEP targeted 
HPC application in, at least, two servers with up 
to two FPGAs per node. 

FPGA Emulator Support to integrate different designs in 
MEEP infrastructure using the MEEP Shell. 

4 

(ACME EA, Ethernet design, EPI/SGA2, OmSs@FPGA) 

RISC-V 
Ecosystem 

Extend the RISC-V vector extension 
Define new RISC-V ISA instructions, compliant 
with the standard, for performing vector 
operations with the specific accelerators (SAs) 

Contribute to the Open Hardware 
ecosystem with new open source MEEP IPs 

3 

MEEP FPGA Shell, Coyote, Aurora, 100GbE, 
ACME*, Lagarto Hun* 
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Goal KPI Objective 

Computing IPs 
(accelerators) 

Support for different specialized 
accelerators as part of the VAS Tile core 
(4.3.2.2.2) 

Demonstrate SAs functionality by reusing the 
same SA-Shell and using custom instructions:  

- Executing a  NN app on SA-NN. 
- Executing Bolt65 app on SA-HEVC. 

VPU – increase of peak performance of the 
accelerator when executing memory-bound 
workloads using the Memory Tile 
(ACME_mode) vs without using it 
(EPI_mode) (4.3.2.2.1) 

10% 

MEEP Shell 

Number of Communication IPs integrated in 
FPGA-Shell 

5 (HBM, PCIe, Aurora, Ethernet, UART) 

Increase of peak performance when using 
smart reordering memory access of HBM 

10% 

Increase of peak performance when using 
parallel accesses to the HBM with multiple 
MCs 

2% per extra MC  

This performance will depend on the application 
and the data mapping in memory 

100 Gb Ethernet  

(HW/SW development) 
Enabling OS control ever the 100Gb Ethernet  

NoC 

Aggregate bisection BW  

Max Latency  

Max Queue Size  

EPI Extension VPU extension 

Less number of elements/register in the VRF 

Dual port VRF 

16 lanes 

Inter-lane communication variation 

Vector extension upgrade to v0.10 (at least 10 
instructions) 

Support for processing short and long vectors 

HPC 
applications 

Execution of well-known HPC 
representative Microkernels: Stream, FFT, 
Saxpy, SpmV, DGEM and matmul 

6 

*IPs not public yet. 

Most of the KPIs have been achieved totally or partially, as the color code reflects in Table 18. 
Green color means the goal has been completely achieved, Orange that it has been partially 
achieved and Red that there is not enough information. More in detail: 

 FPGA-based Platform Infrastructure. Performance improvements are not fully 
achieved, since even though the MEEP FPGA Shell has the potential to execute host-
accelerator communication through Ethernet (over PCIe and/or QSFP port) at peak 
performance, ACME design has several limitations. This is the reason why we have 
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preferred to color orange “Accelerate the execution of one MEEP targeted HPC 
application in one FPGA”.  

 FPGA Emulator. Four different designs have been emulated on both MEEP 
infrastructures, MEEP servers (Phase 1) and MEEP system (Phase 2): ACME 
accelerator, MEEP custom designs for testing the communication IPs, EPI/SGA2 SDV, 
and designs from OmSs@FPGA and AIT flow. 

 RISC-V Ecosystem. As reported in Deliverable D5.3, RVV has been extended to support 
custom SA instructions. These have been tested through RTL simulations, reported in 
deliverable D4.3. Moreover, several IPs have been developed during the MEEP project, 
and are available in GitHub. Others, like ACME, cannot be open sourced yet because of 
their dependencies with other modules. That is the case of Lagarto Hun and the VPU. 
Although MEEP project has extended their features, the baseline IPs are still in the 
process of being open-source.  

 Computing IPs. Regarding SA-Shell, the same wrapper has been used for both SAs, SA-
HEVC, and SA-NN. Although they couldn’t be tested on the FPGA, their functionality 
was tested under RTL simulation, using the Memory Tile behavioral model. About the 
performance increase of the VPU, this goal was not achieved. The reason is due to the 
inherent limitations of the developed ACME: low performance scalar core, small bus 
width for the NoC bus, and no-HPC memory hierarchy. However, the ACME design is a 
perfect framework for continuing working on these well-identified limited points to 
become an HPC-accelerator.  

 MEEP Shell. Regarding the HBM and MCs, the experiments run with the Memory 
Sandbox tool demonstrate that these numbers are reachable. However, we couldn’t 
run experiments with realistic designs, in this case ACME accelerator to validate these 
numbers. That is the reason why we prefer using orange color, instead of green.   

 NoC. Not an extensive work has been done on the NoC development, due to the fact 
that OpenPiton project offers a stable framework. We preferred to start using that with 
the aim of making progress on the ACME accelerator and ensuring correctness, before 
starting to do modifications on it. 

 EPI Extension. After using EPI.VPU v1.0 as a baseline for MEEP project, several 
modifications have been developed. However, it was not possible to upgrade to RVV 
v1.0 or improving the inter-lane communication module. 

 HPC Applications. Deliverable D5.4 executes several benchmarks on released versions 
of the ACME EA, however there was no time to run those benchmarks in acme-mode. 
That is the reason why we prefer to mark the goal as partially achieved. 

6.2. MEEP FPGA contributions to other projects 

Apart from the ones mentioned in the previous deliverable, we have established and keep 
collaborating in multiple external groups in different directions, as listed below:  

 Princeton University (USA): 
Since ACME is based on OpenPiton (developed in the Princeton Parallel Group), we have 
applied the following contributions to the original OpenPiton framework 
(https://github.com/PrincetonUniversity/openpiton/tree/openpiton-dev): 

· Support of Alveo family Xilinx FPGA boards (protosyn switch –board alveou280), 
including PCIe interface in QDMA mode. 



 

 
 

                                                                                                                             
D6.4   v1.1 70 / 83  

· Extension of Ethernet support to Ultrascale+ 100Gb CMAC hard-macro with DMA and 
Alveo board level QSFP connectors (protosyn switch –eth), including updates in Device 
Tree script for support of Linux driver. 

· Support of HBM as an option for system memory (protosyn switch –hbm). 
· Support of multiple Memory Controllers for HBM usage (protosyn switch –multimc). 
· Support of non-cached access to system memory (protosyn switch –ncmem, required 

to work with DMA). 
· Modifications of NoC-AXI4 bridge (fix of bug causing a stuck working with HBM; Big-

End/Little-End data conversion, required to work with PCIe/DMA; parameterizable 
AXI data width conversion; option to reorder HBM replies according to conveyed in 
HBM request AXI ID mapped from core X/Y coordinate or MSHR ID NoC fields). 

· Support of alternate 2D-mesh NoC (protosyn switch –pronoc). 
· Support of Lagarto scalar core (protosyn switch –core lagarto). 
· Support of building under FPGA Shell (protosyn switch –meep) 

 University of Paderborn (Germany): 
The collaboration with the University of Paderborn is ongoing and consists of several topics: 
the FPGA cluster, Aurora designs, and the FPGA Shell. 

· FPGA Cluster. Technical experiences have been exchanged with them, since Uni 
Paderborn has an FPGA-based cluster preparing for HPC simulations.  

· Aurora Designs. The Paderborn group also showed interest in the Aurora designs 
developed by the FPGA team. They want to implement Aurora in their cluster. We have 
been sharing information about the Aurora designs we have developed and the specs 
these designs have. We have given access to our resources to test the projects. 

· FPGA Shell. It was also discussed as a final element that includes all the main IPs 
developed by the team. They are using it to test the features, e.g., Aurora DMA provides 
the Cluster. 

 Technical University of Crete (Greece): 
We are technically supporting a Ph.D. candidate at the Technical University of Crete to use our 
FPGA Shell:  

· The aim of this collaboration is to use our FPGA Shell to map an Arianne processor 
on the U55C (using our flow for generating bitstream and booting Linux) while 
equipping it with an IDS (Intrusion Detection System) accelerator. We update and 
synchronize all the main repos to be accessible on GitHub. 
https://github.com/MEEPproject 
 

 Polytechnique Montréal (Canada): 
We are technically supporting a student from Polytechnique Montréal.  

· The aim of this collaboration is to use the FPGA Shell for experimenting with our 
OpenPiton repo using Ariane. Her research project is about enabling the vectorized 
version of Ariane, Ara with OpenPiton.  
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Source code repositories 

Lagarto-sdk: https://gitlab.bsc.es/meep/meep-os/lagarto-openpiton-sdk  

FPGA Shell 

We follow the git submodule strategy to store our code, which means that each module has its 
own repository. 

FPGA Shell: https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/fpga_shell   
(Stable branch: production)  

IPs:  

Ethernet 100Gb: 
https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/fpga-tools  

Ethernet 10Gb: 
https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/10gb_ethernet  

Aurora: 
https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/aurora_user_interf
ace  

https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/aurora_raw  

AXI-BROM: 
https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/axi_brom  

UART: https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/ariane_uart 

FPGA tools 

FPGA tools : https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/fpga-tools  

ACME emulator accelerator (ACME_EA) 

MEEP_openpiton: 
https://gitlab.bsc.es/meep/FPGA_implementations/AlveoU280/meep_openpiton  
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Appendix A 

Baseline throughput and address mapping policies impact 

The presented experiments were performed on a Xilinx Alveo U280 since we are interested in 
HPC applications and is the only Xilinx HPC-oriented board that has DDR and HBM, ensuring 
fair comparisons [7], [49]. The Alveo U55C, which is the next and latest version, has a common 
topology to the U280.  

In these experiments, the throughput of a pseudo-channel is not multiplied to obtain the 
overall throughput. In fact, in each case every pseudo-channel or bank is accessed 
simultaneously, and their throughput is added to obtain the overall performance. From 
experiments in Figure8 and Figure 9 we formulate the following conjectures: 

 For HBM, by obtaining the same result as performing a multiplication, we demonstrate 
that HBM micro-switches are fully implemented 4x4 crossbars and that the memory 
controller handles its two pseudo-channels without losing performance. 

 The best throughput for the sequential configuration is always achieved by the default 
policy ensuring that both memories are configured for this type of access. 

 Read and write transactions follow the same trend regardless of the policy, but read 
performance is slightly better than write performance. 

 The best achievable throughput of DDR4 is 6.18% lower than the bandwidth, while 
that of HBM is only 0.01% lower. 

 The worst achievable performance of DDR4 is 92.02% lower than bandwidth, while 
that of HBM is only 56.39%. 

 At maximum performance, each bank of DDR4 delivers up to 19.2 GB/s due to its wider 
port width. HBM, on the other hand, is able to deliver 14.4GB/s because, although the 
port is half the width of DDR, it operates at higher frequencies. 

 HBM needs to enable 4 pseudo channels in parallel to outperform DDR4 and, by adding 
more channels, this difference increases. 

Micro-switches cross domain 

Most modern computer applications including HPC occupy large memory regions. Therefore, 
we were interested in how the HBM behaves when accessing different memory regions across 
pseudo-channels and micro-switches. 

Figure 10 indicates the performance of a single channel as the baseline. Figure 11.A shows the 
results of accessing the different pseudo-channels of the HBM emulating a single-threaded 
processing element connected to the AXI0 port. These experiments are performed with a 
sequential access pattern (RST), a burst size of 16 which is the maximum for AXI3 and RBC 
(true) as address mapping policy which offers the best performance for this type of access 
pattern according to our experiments. Two main conclusions can be drawn from these 
experiments: 

 The first is that the performance of the pseudo-channels on the same micro-switch is 
the same regardless of the AXI port accessing them. 

 The second, and perhaps more important, is that if the processing element leaves the 
micro-switch to which it is connected, performance is reduced by about 50%. It is 
therefore important that accelerator or processor accesses when using HBM are kept 
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at least within the same micro-switch. If more memory is needed, the data should be 
split between the micro-switches and accessed in parallel from another AXI port. 
Otherwise, no matter whether the access comes from an adjacent or the farthest 
micro-switch, performance will be severely affected equally. 

Burst impact on performance 

For HPC is not enough to analyze sequential accesses, therefore we intend to also analyze 
processing threads performing sparse accesses. We emulate this by performing pseudo-
random accesses with our AXI Traffic Generators, as this data is not in consecutive addresses 
the burst concept does not apply directly. To have a fair sequential baseline comparison we 
performed sequential accesses with a burst size of 1 element = 1 beat = 256 bits = 32 Bytes. 

By changing the burst between 2 and 8 no difference has been noticed in the performance but 
removing at all causes a throughput decrease of around 30% when the AXI Port is accessing 
its vertical micro-switch. Is interesting to note that, as previously, the rest of the micro-
switches in the same stack behave alike and with an overall lower throughput but they only 
get affected by around 15% compared to the experiments with burst size. It is even more 
significant that, for the first time, we notice a difference between the two stacks in throughput 
because the pseudo-channels of the further stack (only in the write transactions) get affected 
by 60% compared to the experiments with burst size (Figure 11.B). 

Randomizing inside a pseudo-channel 

Our first approach when emulating processors or accelerators with sparse patterns was to 
maintain the address bits related to the pseudo channel and just randomize the application 
address bits which in the case of HBM are [27:5]. Our Memory Sandbox eases doing this by just 
changing one parameter (Rand_Whole_Addr). With this configuration we analyze the impact 
produced by pseudo-random accesses when opening and closing bank groups and banks when 
accessing different columns and rows of the pseudo-channel. 

In this experiment (Figure 11.C) we notice for the first time almost no differences between the 
micro-switch to which is connected the AXI port and the rest of the AXI ports in different micro-
switches within the same stack. In the case of the read transaction every micro-switch behaves 
almost the same. On the other hand, in the write transactions in the first stack all the AXI ports 
get affected by around 44% but the vertically attached one reduces its throughput by around 
65%. The ones in further stack on the other hand behave like the previous experiment. 

Randomizing across different pseudo-channels 

In this section we wanted to emulate processors or accelerators with sparse patterns by 
randomizing the address inside the pseudo-channel as previous, but also randomizing which 
pseudo-channels are accessed. This is done by setting the parameters Rand_Whole_Addr and 
Rand_PSCH. 

With this configuration we analyze the huge impact of the pseudo-channel change in 
consecutive pseudo-random accesses where everything changes in the address. The idea was 
to emulate a single thread processor which performs accesses which start in its vertical micro-
switch and in each new experiment add micros-switches to randomize e.g., the first experiment 
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randomizes among 4 pseudo-channels, the second one among 8 and up to the 32 pseudo-
channels. 

The performance in this case (Figure 11.D) is the worst measured one. It decreases to 0.61% 
of the best-case scenario measured for the write transactions and 0.17% for the read ones. We 
are aware that some of these experiments are quite extensive and that there is only slight 
probability that, for example, an accelerator always accesses to different pseudo-channels. 
Nevertheless, the goal is to generate baselines for future comparison and for other developers 
to have a starting point to compare with. In fact, our Memory Sandbox is provided as part of 
the FPGA Shell with the purpose of providing a software development and experimentation 
platform to enable software readiness for new hardware as one of the main MEEP project 
goals. 

Simultaneous accesses to the same pseudo-channel 

In all the previous experiments the emulated architecture is based on a single thread 
processing element. Nevertheless, common accelerator multi-core architectures are 
heterogeneous ones where several processing elements are accessing the memory in parallel. 
All the information presented up to now applies to any of the cores or accelerators in this 
heterogeneous system. Nevertheless, we still must explore what happens when several of 
these processing elements target the same memory region. With this purpose a set of 
experiments were designed with multiple AXI Traffic Generators emulating the different 
processing elements. The impact on throughput is analyzed while adding more AXI Traffic 
Generators always accessing the same pseudo-channel 0. This was performed with sequential 
access to the same address to increase the probabilities of creating the desired collisions that 
we wanted in this experiment to measure their impact. 

In Figure 12 is shown the huge impact that simultaneous access can have on the HBM. It is 
important to highlight that once again all the processing elements connected to the same 
micro-switch have similar behavior. Nonetheless, when going from one processing element to 
two, the throughput is reduced by around 50% in each of those two (Figure 12.B). Then when 
going from two to three, all of them get a throughput reduction of 32% again (Figure 12.C) and 
from 3 to 4, the 4 of them get a throughput reduction of 25% once again (Figure 12.D). 
According to our measurements, the aggregate throughput of each experiment is the same as 
that of only one processing element. 

The 3 rightmost sets of bars are for 8 (Figure 12.E), 16 (Figure 12.F) and 32 (Figure 12.G) 
processing elements in different micro-switches. Across the 3 experiments it can be observed 
that regardless of the number of processing elements those in the first micro-switch have a 
similar throughput, and the same happens for the rest. This is explained by understanding that 
the micro-switch has 4 inputs for the AXI Ports that have priority to the one connected to the 
other micro-switch. According to our measurements, by adding more processing elements the 
throughput decreases every time and, as before, the aggregate throughput of each experiment 
is the same as that of only one processing element. 

The powerful capabilities of FPGAs to address challenging HPC workloads with a 
Heterogeneous computing paradigm are currently underexplored because leveraging these 
devices is quite burdensome. When FPGAs are used to address HPC applications, but their 
resources are not properly configured, the resulting implementations can underperform quite 
significantly. This is especially important regarding memories, as FPGAs do not have a 
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preconfigured and tested cache hierarchy like microprocessors or GPUs. HBM appears as a 
solution being integrated into FPGAs to face the memory wall issue and large companies are 
already committed to its wide use.  
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Appendix I 

Table A shows the MEEP VPU characteristics used in each of the FPGA releases. 

MEEP VPU features 

 MEEP VPU v1.1 
(FPGA 1st release) 

MEEP VPU v2.2.1 
(FPGA 2nd release) 

Number of vector 
lanes Up to 16 (grouped in vector-lane pairs for smaller configurations (2-4-8)) 

Maximum vector 
length 128 elements x 64 bits 

ACME-classic mode 
   128 elements x 64 bits 
ACME mode 
   512 elements x 64 bits 

Number of FMAs 1 Fused Multiply Accumulate (FMA) unit per lane (2 DP FLOP/cycle) 

FP operation support Support for 64- and 32-bit FP operation 

Integer operation 
support Support for 64-, 32-, 16-, and 8-bit integer operations, signed and unsigned 

Vector Register File 
(VRF) 

VRF number of banks: 5. 
N of physical vector registers: 40. 
Single-Port limited access. 

VRF number of banks: 4. 
N of physical vector registers: 32  
Dual-Port access. 
Redesign of lane control logic to leverage 
VRF concurrent read/write accesses. 

RISC-V vector version RVV v0.7.1 

Core’s Interface OVI 1.0 [OVI] 

Memory’s interface OVI 1.0 OVI 1.0 & Direct Memory Access 

Direct access to L2 Through OVI Through OVI & Long Vector Register File 

Execution modes 
support 

ACME-classic mode  
   vector lanes config: 2,4,8,16 

ACME-classic mode 
   vector lanes config: 2,4,8,16 
ACME mode 
   vector lanes config: 2, 16 

Table A. MEEP VPU characteristics for each of the FPGA releases 
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Appendix II 

Test resources: 

1. 20230407_84559:  

 acme_ea_1h16v_u280 

 

2. 20230503_86660:  

 acme_ea_16h_u280 

 

3. 20230607_90803: 

acme_ea_16h_u280 
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acme_ea_16h_u55c 

 

acme_ea_1h16v_u280 

 

acme_ea_1h16v_u55c 
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Appendix III 

Flow chart of CICD FPGA Shell Flow 
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Appendix IV 

1. Production resources results using U55C Alveo card. 

ID Module CLB_Luts CLB Register CLB 
LUT as 
Logic 

Block RAM 
Tile URAM 

20230405_8
4445 

ACME EA 
4A             

  TILE0 56831 36847 10441 56543 41.5 2 

  ARIANE 36120 22798 6505 36120 32 0 

  
ACME EA 
1H             

  TILE0 52960 34657 9464 52672 41.5 2 

  
LAGARTO_
M20 26672 15449 5016 26672 32 0 

  
ACME EA 
4H2V             

  TILE0 160779 126538 32806 159287 161.5 2 

  
LAGARTO_
M20 132019 107317 27343 130815 152 0 

  VPU_INST 99788 89843 20780 98584 0 0 

20230502_8
6638 

ACME EA 
4A             

  TILE0 56827 36848 11376 56539 41.5 2 

  ARIANE 36119 22799 7228 36119 32 0 

  
ACME EA 
1H             

  TILE0 55257 37159 10445 54892 41.5 2 

  
LAGARTO_
M20 27844 17951 5443 27767 32 0 

  
ACME EA 
4H2V             

  TILE0 163668 129080 29495 162099 161.5 2 
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LAGARTO_
M20 133769 109859 23986 132488 152 0 

  VPU_INST 99855 89694 18360 98651 0 0 

  
ACME EA 
1H2G             

  TILE0 432534 237321 84648 429379 161.5 2 

  
LAGARTO_
M20 402964 218106 78850 400097 152 0 

  VPU_INST 100264 89714 21087 99061 0 0 

  SA-HECV 117965 63406 24534 117007 0 0 

  SA-NN 146995 43800 26502 146366 0 0 

20230528_9
0183 

ACME EA 
4A             

  TILE0 56898 36848 10680 56610 41.5 2 

  ARIANE 36162 22799 6726 36162 32 0 

  
ACME EA 
1H             

  TILE0 55731 37161 10363 55366 41.5 2 

  
LAGARTO_
M20 28321 17954 5519 28244 32 0 

  
ACME EA 
4H2V             

  TILE0 164088 129076 33948 162519 161.5 2 

  
LAGARTO_
M20 134206 109855 28258 132925 152 0 

  VPU_INST 99653 89692 20824 98449 0 0 

  
ACME EA 
1H2G             

  TILE0 432632 237322 83958 429477 161.5 2 

  
LAGARTO_
M20 403058 218107 78801 400191 152 0 
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  VPU_INST 100235 89714 20611 99032 0 0 

  SA-HECV 117951 63407 25562 116993 0 0 

  SA-NN 147011 43801 26402 146382 0 0 
 

2. Dashboard of each ACME flavor 

a .  ACME_EA_4A Production release  

 

b. ACME_EA_1H Production release  

 

 

c.  ACME_EA_4H2V Production release 

 


